Functional Evolution of Subolesin/Akirin

. 2018 ; 9 () : 1612. [epub] 20181113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30542290

The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.

Zobrazit více v PubMed

Adipietro K. A., Mainland J. D., Matsunami H. (2012). Functional evolution of mammalian odorant receptors. PubMed DOI PMC

Almazán C., Blas-Machado U., Kocan K. M., Yoshioka J. H., Blouin E. F., Mangold A. J., et al. (2005). Characterization of three PubMed DOI

Almazán C., Kocan K. M., Bergman D. K., Garcia-Garcia J. C., Blouin E. F., de la Fuente J. (2003). Identification of protective antigens for the control of PubMed DOI

Almazán C., Lagunes R., Villar M., Canales M., Rosario-Cruz R., Jongejan F., et al. (2010). Identification and characterization of PubMed DOI PMC

Almazán C., Moreno-Cantú O., Moreno-Cid J. A., Galindo R. C., Canales M., Villar M., et al. (2012). Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. PubMed DOI

Andersson S. G., Kurland C. G. (1998). Reductive evolution of resident genomes. PubMed DOI

Antunes S., Merino O., Mosqueda J., Moreno-Cid J. A., Bell-Sakyi L., Fragkoudis R., et al. (2014). Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. PubMed DOI PMC

Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. (2015). Systems biology of tissue-specific response to PubMed DOI PMC

Bensaci M., Bhattacharya D., Clark R., Hu L. T. (2012). Oral vaccination with PubMed DOI PMC

Beutler B., Moresco E. M. (2008). Akirins versus infection. PubMed DOI

Bonnay F., Nguyen X. H., Cohen-Berros E., Troxler L., Batsche E., Camonis J., et al. (2014). Akirin specifies NF-κB selectivity of PubMed DOI PMC

Brown C. J., Johnson A. K., Dunker A. K., Daughdrill G. W. (2011). Evolution and disorder. PubMed DOI PMC

Busby A. T., Ayllón N., Kocan K. M., Blouin E. F., de la Fuente G., Galindo R. C., et al. (2012). Expression of heat-shock proteins and subolesin affects stress responses, PubMed DOI

Canales M., Naranjo V., Almazán C., Molina R., Tsuruta S. A., Szabó M. P. J., et al. (2009). Conservation and immunogenicity of the mosquito ortholog of the tick protective antigen, subolesin. PubMed DOI

Carpio Y., Basabe L., Acosta J., Rodríguez A., Mendoza A., Lisperger A., et al. (2011). Novel gene isolated from PubMed DOI

Carpio Y., García C., Pons T., Haussmann D., Rodríguez-Ramos T., Basabe L., et al. (2013). Akirins in sea lice: first steps toward a deeper understanding. PubMed DOI

Carreón D., Pérez de la Lastra J. M., Almazán C., Canales M., Ruiz-Fons F., Boadella M., et al. (2012). Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. PubMed DOI

Clemons A. M., Brockway H. M., Yin Y., Kasinathan B., Butterfield Y. S., Jones S. J., et al. (2013). Akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. PubMed DOI PMC

Contreras M., de la Fuente J. (2016a). Control of PubMed DOI

Contreras M., de la Fuente J. (2016b). Vaccinomics approach to the development of vaccines for the control of multiple ectoparasite infestations. PubMed DOI PMC

Contreras M., Moreno-Cid J. A., Domingos A., Canales M., Díez-Delgado I., Pérez de la Lastra J. M., et al. (2015). Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin- PubMed DOI

da Costa M., Pinheiro-Silva R., Antunes S., Moreno-Cid J. A., Villar M., de la Fuente J., et al. (2014). Mosquito Akirin as a potential antigen for malaria control. PubMed DOI PMC

DasGupta R., Kaykas A., Moon R. T., Perrimon N. (2005). Functional genomic analysis of the Wnt-wingless signaling pathway. PubMed DOI

de la Fuente J. (2018). Controlling ticks and tick-borne diseases…looking forward. PubMed DOI

de la Fuente J., Almazaìn C., Blas-Machado U., Naranjo V., Mangold A. J., Blouin E. F., et al. (2006a). The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. PubMed

de la Fuente J., Almazán C., Blouin E. F., Naranjo V., Kocan K. M. (2006b). Reduction of tick infections with PubMed

de la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A., Estrada-Peña A., et al. (2017a). Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. PubMed DOI PMC

de la Fuente J., Contreras M., Estrada-Peña A., Cabezas-Cruz A. (2017b). Targeting a global health problem: vaccine design and challenges for the control of tick-borne diseases. PubMed DOI

de la Fuente J., Contreras M. (2015). Tick vaccines: current status and future directions. PubMed DOI

de la Fuente J., Kocan K. M. (2006). Strategies for development of vaccines for control of ixodid tick species. PubMed DOI

de la Fuente J., Kocan K. M. (2014). “Development of vaccines for control of tick infestations and interruption of pathogen transmission,” in

de la Fuente J., Manzano-Roman R., Naranjo V., Kocan K. M., Zivkovic Z., Blouin E. F., et al. (2010). Identification of protective antigens by RNA interference for control of the lone star tick, PubMed DOI

de la Fuente J., Maritz-Olivier C., Naranjo V., Ayoubi P., Nijhof A. M., Almazán C., et al. (2008). Evidence of the role of tick subolesin in gene expression. PubMed DOI PMC

de la Fuente J., Moreno-Cid J. A., Canales M., Villar M., Pérez de la Lastra J. M., Kocan K. M., et al. (2011). Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. PubMed DOI

de la Fuente J., Moreno-Cid J. A., Galindo R. C., Almazán C., Kocan K. M., Merino O., et al. (2013). Subolesin/Akirin vaccines for the control of arthropod vectors and vector-borne pathogens. PubMed DOI

de la Fuente J., Villar M., Cabezas-Cruz A., Estrada-Peña A., Ayllón N., Alberdi P. (2016). Tick-host-pathogen interactions: conflict and cooperation. PubMed DOI PMC

Dingwall C., Robbins J., Dilworth S. M., Roberts B., Richardson W. D. (1988). The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. PubMed DOI PMC

Driscoll T. P., Verhoeve V. I., Guillotte M. L., Lehman S. S., Rennoll S. A., Beier-Sexton M., et al. (2017). Wholly PubMed DOI PMC

Ehrenberg M., Kurland C. G. (1984). Costs of accuracy determined by a maximal growth rate constraint. PubMed DOI

Estrada-Peña A., Villar M., Artigas-Jerónimo S., López V., Alberdi P., Cabezas-Cruz A., et al. (2018). Use of graph theory to characterize human and arthropod vector cell protein response to infection. PubMed DOI PMC

Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. PubMed DOI

Galindo R. C., Doncel-Pérez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A. J., et al. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. PubMed DOI

Giraldo-Calderón G. I., Emrich S. J., MacCallum R. M., Maslen G., Dialynas E., Topalis P., et al. (2015). VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. PubMed DOI PMC

Gonzalez K., Baylies M. (2005). “bhringi: A novel Twist co-regulator”, in

Goto A., Fukuyama H., Imler J. L., Hoffmann J. A. (2014). The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the PubMed DOI PMC

Goto A., Matsushita K., Gesellchen V., El Chamy L., Kuttenkeuler D., Takeuchi O., et al. (2008). Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in Drosophila and mice. PubMed DOI PMC

Gregory T. R. (2005).

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. (2016). Genomic insights into the PubMed DOI PMC

Hajdušek O., Šíma R., Ayllón N., Jalovecká M., Perner J., de la Fuente J., et al. (2013). Interaction of the tick immune system with transmitted pathogens. PubMed DOI PMC

Harrington D., Canales M., de la Fuente J., de Luna C., Robinson K., Guy J., et al. (2009). Immunisation with recombinant proteins subolesin and Bm86 for the control of PubMed DOI

Holm L., Laakso L. M. (2016). Dali server update. PubMed DOI PMC

Hoogstraal H. (1956).

Horak I. G., Heyne H., Williams R., Gallivan G. J., Spickett A. M., Bezuidenhout J. D., et al. (2018). DOI

Hou F., Wang X., Qian Z., Liu Q., Liu Y., He S., et al. (2013). Identification and functional studies of Akirin, a potential positive nuclear factor of NF-κB signaling pathways in the Pacific white shrimp, PubMed DOI

Ivics Z., Hackett P. B., Plasterk R. H., Izsvak Z. (1997). Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. PubMed DOI

Kasthuri S. R., Umasuthan N., Whang I., Wan Q., Lim B. S., Jung H. B., et al. (2013). Akirin2 homologues from rock bream, PubMed DOI

Katoh K., Rozewicki J., Yamada K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. PubMed DOI PMC

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC

Kim H., Lee S. K., Hong M. W., Park S. R., Lee Y. S., Kim J. W., et al. (2013). Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. PubMed DOI

Komiya Y., Kurabe N., Katagiri K., Ogawa M., Sugiyama A., Kawasaki Y., et al. (2008). A novel binding factor of 14-3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis. PubMed DOI

Koonin E. V. (2005). Orthologs, paralogs, and evolutionary genomics. PubMed DOI

Krossa S., Schmitt A. D., Hattermann K., Fritsch J., Scheidig A. J., Mehdorn H. M., et al. (2015). Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1. PubMed DOI PMC

Kumar B., Manjunathachar H. V., Nagar G., Ravikumar G., de la Fuente J., Saravanan B. C., et al. (2017). Functional characterization of candidate antigens of PubMed DOI

Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. PubMed DOI PMC

Kurland C. G., Canbäck B., Berg O. G. (2007). The origins of modern proteomes. PubMed DOI

Law M. J., Linde M. E., Chambers E. J., Oubridge C., Katsamba P. S., Nilsson L., et al. (2006). The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA. PubMed DOI PMC

Leung S. W., Harreman M. T., Hodel M. R., Hodel A. E., Corbett A. H. (2003). Dissection of the karyopherin alpha nuclear localization signal (NLS)-binding groove: functional requirements for NLS binding. PubMed DOI

Liu N., Wang X. W., Sun J. J., Wang L., Zhang H. W., Zhao X. F., et al. (2016). Akirin interacts with Bap60 and 14-3-3 proteins to regulate the expression of antimicrobial peptides in the kuruma shrimp ( PubMed DOI

Liu T., Gao Y., Xu T. (2015). Evolution of akirin family in gene and genome levels and coexpressed patterns among family members and rel gene in croaker. PubMed DOI

Liu X., Xia Y., Tang J., Ma L., Li C., Ma P., et al. (2017). Dual roles of Akirin2 protein during PubMed DOI PMC

Liu Y., Song L., Sun Y., Liu T., Hou F., Liu X. (2016). Comparison of immune response in Pacific white shrimp, PubMed DOI

Lu P., Zhou Y., Yu Y., Cao J., Zhang H., Gong H., et al. (2016). RNA interference and the vaccine effect of a subolesin homolog from the tick PubMed DOI

Macqueen D. (2009). Commentary on Galindo et al. [Dev. Comp. Immunol. 33(4) (2009) 612-617]. PubMed DOI

Macqueen D. J., Johnston I. A. (2009). Evolution of the multifaceted eukaryotic akirin gene family. PubMed DOI PMC

Macqueen D. J., Bower N. I., Johnston I. A. (2010a). Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis. PubMed DOI

Macqueen D. J., Kristjánsson B. K., Johnston I. A. (2010b). Salmonid genomes have a remarkably expanded akirin family, coexpressed with genes from conserved pathways governing skeletal muscle growth and catabolism. PubMed DOI PMC

Maeda I., Kohara Y., Yamamoto M., Sugimoto A. (2001). Large-scale analysis of gene function in PubMed DOI

Makkerh J. P., Dingwall C., Laskey R. A. (1996). Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. PubMed DOI

Mans B. J., De Castro M. H., Pienaar R., De Klerk D., Gaven P., Genu S., et al. (2016). Ancestral reconstruction of tick lineages. PubMed DOI

Manzano-Román R., Díaz-Martín V., Oleaga A., Pérez-Sánchez R. (2015). Identification of protective linear B-cell epitopes on the subolesin/akirin orthologues of PubMed DOI

Manzano-Román R., Díaz-Martín V., Oleaga A., Siles-Lucas M., Pérez-Sánchez R. (2012). Subolesin/akirin orthologs from PubMed DOI

Marshall A., Salerno M. S., Thomas M., Davies T., Berry C., Dyer K., et al. (2008). Mighty is a novel promyogenic factor in skeletal myogenesis. PubMed DOI

Medzhitov R., Janeway C. A., Jr. (1997). Innate immunity: impact on the adaptive immune response. PubMed DOI

Merino O., Alberdi P., Pérez de la Lastra J. M., de la Fuente J. (2013a). Tick vaccines and the control of tick-borne pathogens. PubMed DOI PMC

Merino O., Antunes S., Mosqueda J., Moreno-Cid J. A., Pérez de la Lastra J. M., Rosario-Cruz R., et al. (2013b). Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. PubMed DOI

Merino O., Almazán C., Canales M., Villar M., Moreno-Cid J. A., Estrada-Peña A., et al. (2011a). Control of PubMed DOI

Merino O., Almazán C., Canales M., Villar M., Moreno-Cid J. A., Galindo R. C., et al. (2011b). Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by PubMed DOI

Mobley C. B., Fox C. D., Ferguson B. S., Amin R. H., Dalbo V. J., Baier S., et al. (2014). L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy. PubMed DOI PMC

Morel P. C. (2003).

Moreno-Cid J. A., Jiménez M., Cornelie S., Molina R., Alarcón P., Lacroix M.-N., et al. (2011). Characterization of PubMed DOI

Moreno-Cid J. A., Pérez de la Lastra J. M., Villar M., Jiménez M., Pinal R., Estrada-Peña A., et al. (2013). Control of multiple arthropod vector infestations with subolesin/akirin vaccines. PubMed DOI

Naranjo N., Ayllón N., Pérez de la Lastra J. M., Galindo R. C., Kocan K. M., Blouin E. F., et al. (2013). Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, PubMed DOI PMC

Nowak S. J., Aihara H., Gonzalez K., Nibu Y., Baylies M. K. (2012). Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PubMed DOI PMC

Nowak S. J., Baylies M. K. (2012). Akirin: a context-dependent link between transcription and chromatin remodeling. PubMed DOI PMC

Olds C. L., Mwaura S., Odongo D. O., Scoles G. A., Bishop R., Daubenberger C. (2016). Induction of humoral immune response to multiple recombinant PubMed DOI PMC

Orengo C. A., Thornton J. M. (2005). Protein families and their evolution-a structural perspective. PubMed DOI

Pavithiran A., Bathige S. D. N. K., Kugapreethan R., Priyathilaka T. T., Yang H., Kim M. J., et al. (2018). A comparative study of three akirin genes from big belly seahorse PubMed DOI

Peña-Rangel M. T., Rodriguez I., Riesgo-Escovar J. R. (2002). A misexpression study examining dorsal thorax formation in PubMed PMC

Prudencio C. R., Pérez de la Lastra J. M., Canales M., Villar M., de la Fuente J. (2010). Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. PubMed DOI

Qu F., Xiang Z., Zhang Y., Li J., Zhang Y., Yu Z. (2014). The identification of the first molluscan Akirin2 with immune defense function in the Hong Kong oyster PubMed DOI

Rahman M. K., Saiful Islam M., You M. (2018). Impact of subolesin and cystatin knockdown by RNA interference in adult female PubMed DOI PMC

Richardson J. M., Colloms S. D., Finnegan D. J., Walkinshaw M. D. (2009). Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. PubMed DOI PMC

Rioualen C., Da Costa Q., Chetrit B., Charafe-Jauffret E., Ginestier C., Bidaut G. (2017). HTS-Net: an integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings. PubMed DOI PMC

Salerno M. S., Dyer K., Bracegirdle J., Platt L., Thomas M., Siriett V., et al. (2009). Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis. PubMed DOI

Sasaki M., Akiyama-Oda Y., Oda H. (2017). Evolutionary origin of type IV classical cadherins in arthropods. PubMed DOI PMC

Sasaki S., Yamada T., Sukegawa S., Miyake T., Fujita T., Morita M., et al. (2009). Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. PubMed DOI PMC

Schetters T., Bishop R., Crampton M., Kopáčk P., Lew-Tabor A., Maritz-Olivier C., et al. (2016). Cattle tick vaccine researchers join forces in CATVAC. PubMed DOI PMC

Shakya M., Kumar B., Nagar G., de la Fuente J., Ghosh S. (2014). Subolesin: a candidate vaccine antigen for the control of cattle tick infestations in Indian situation. PubMed DOI

Shaw D. K., Wang X., Brown L. J., Oliva Chávez A. S., Reif K. E., Smith A. A., et al. (2017). Infection-derived lipids elicit an immune deficiency circuit in arthropods. PubMed DOI PMC

Smith A., Guo X., de la Fuente J., Naranjo N., Kocan K. M., Kaufman W. R. (2009). The impact of RNA interference of the subolesin and voraxin genes in male PubMed DOI

Sonenshine D. E., Kocan K. M., de la Fuente J. (2006). Tick control: further thoughts on a research agenda. PubMed DOI

Staley J. T. (2017). Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and Archaea and the Nuclear Compartment Commonality hypothesis. PubMed DOI PMC

Sun W., Huang H., Ma S., Gan X., Zhu M., Liu H., et al. (2016). Akirin2 could promote the proliferation but not the differentiation of duck myoblasts via the activation of the mTOR/p70S6K signaling pathway. PubMed DOI

Tartey S., Matsushita K., Imamura T., Wakabayashi A., Ori D., Mino T., et al. (2015). Essential function for the nuclear protein Akirin2 in B cell activation and humoral immune responses. PubMed DOI

Tartey S., Matsushita K., Vandenbon A., Ori D., Imamura T., Mino T., et al. (2014). Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex. PubMed DOI PMC

Torina A., Moreno-Cid J. A., Blanda V., Fernández de Mera I. G., Pérez de la Lastra J. M., Scimeca S., et al. (2014). Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. PubMed DOI PMC

Valenzuela-Muñoz V., Gallardo-Escárate C. (2014). TLR and IMD signaling pathways from PubMed DOI

Villar M., Marina A., de la Fuente J. (2017). Applying proteomics to tick vaccine development: where are we? PubMed DOI

Voigt F., Wiedemann L., Zuliani C., Querques I., Sebe A., Mates L., et al. (2016). Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. PubMed DOI PMC

Wan F., Lenardo M. J. (2010). The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. PubMed DOI PMC

Wang M., Kurland C. G., Caetano-Anollés G. (2011). Reductive evolution of proteomes and protein structures. PubMed DOI PMC

Watanabe N., Satoh Y., Fujita T., Ohta T., Kose H., Muramatsu Y., et al. (2011). Distribution of allele frequencies at TTN g.231054C > T, RPL27A g.3109537C > T and AKIRIN2 c. PubMed DOI PMC

Wolf Y. I., Koonin E. V. (2013). Genome reduction as the dominant mode of evolution. PubMed DOI PMC

Xue X., Wang L., Chen Y., Zhang X., Luo H., Li Z., et al. (2014). Identification and molecular characterization of an Akirin2 homolog in Chinese loach ( PubMed DOI

Yan J., Dong X., Kong Y., Zhang Y., Jing R., Feng L. (2013). Identification and primary immune characteristics of an amphioxus akirin homolog. PubMed DOI

Yang C. G., Wang X. L., Wang L., Zhang B., Chen S. L. (2011). A new Akirin1 gene in turbot ( PubMed DOI

Yang C. G., Wang X. L., Zhang B., Sun B., Liu S. S., Chen S. L. (2013). Screening and analysis of PoAkirin1 and two related genes in response to immunological stimulants in the Japanese flounder ( PubMed DOI PMC

Zanesi N., Balatti V., Riordan J., Burch A., Rizzotto L., Palamarchuk A., et al. (2013). A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model. PubMed DOI PMC

Zhang Y. (2008). I-TASSER server for protein 3D structure prediction. PubMed DOI PMC

Zivkovic Z., Esteves E., Almazán C., Daffre S., Nijhof A. M., Kocan K. M., et al. (2010a). Differential expression of genes in salivary glands of male PubMed DOI PMC

Zivkovic Z., Torina A., Mitra R., Alongi A., Scimeca S., Kocan K. M., et al. (2010b). Subolesin expression in response to pathogen infection in ticks. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...