Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum

. 2018 ; 8 () : 265. [epub] 20180803

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30123779

One of the major challenges in modern biology is the use of large omics datasets for the characterization of complex processes such as cell response to infection. These challenges are even bigger when analyses need to be performed for comparison of different species including model and non-model organisms. To address these challenges, the graph theory was applied to characterize the tick vector and human cell protein response to infection with Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. A network of interacting proteins and cell processes clustered in biological pathways, and ranked with indexes representing the topology of the proteome was prepared. The results demonstrated that networks of functionally interacting proteins represented in both infected and uninfected cells can describe the complete set of host cell processes and metabolic pathways, providing a deeper view of the comparative host cell response to pathogen infection. The results demonstrated that changes in the tick proteome were driven by modifications in protein representation in response to A. phagocytophilum infection. Pathogen infection had a higher impact on tick than human proteome. Since most proteins were linked to several cell processes, the changes in protein representation affected simultaneously different biological pathways. The method allowed discerning cell processes that were affected by pathogen infection from those that remained unaffected. The results supported that human neutrophils but not tick cells limit pathogen infection through differential representation of ras-related proteins. This methodological approach could be applied to other host-pathogen models to identify host derived key proteins in response to infection that may be used to develop novel control strategies for arthropod-borne pathogens.

Zobrazit více v PubMed

Asanovich K. M., Bakken J. S., Madigan J. E., Aguero-Rosenfeld M., Wormser G. P., Dumler J. S. (1997). Antigenic diversity of granulocytic Ehrlichia isolates from humans in Wisconsin and New York and a horse in California. J. Infect. Dis. 176, 1029–1034. PubMed

Ayllón N., Villar M., Busby A. T., Kocan K. M., Blouin E. F., Bonzón-Kulichenko E., et al. . (2013). Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 81, 2415–2425. 10.1128/IAI.00194-13 PubMed DOI PMC

Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. . (2015). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC

Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752. 10.1073/pnas.0400087101 PubMed DOI PMC

Barthelemy M. (2004). Betweenness centrality in large complex networks. Eur. Phys. J. B. 38, 163–168. 10.1140/epjb/e2004-00111-4 DOI

Borjesson D. L., Kobayashi S. D., Whitney A. R., Voyich J. M., Argue C. M., Deleo F. R. (2005). Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174, 6364–6372. 10.4049/jimmunol.174.10.6364 PubMed DOI

Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J. J., Pierce R., Villar M., et al. . (2016). Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector, Ixodes scapularis. Epigenetics 11, 303–319. 10.1080/15592294.2016.1163460 PubMed DOI PMC

Cabezas-Cruz A., Alberdi P., Valdés J. J., Villar M., de la Fuente J. (2017). Anaplasma phagocytophilum infection subverts carbohydrate metabolic pathways in the tick vector, Ixodes scapularis. Front. Cell. Infect. Microbiol. 7:23. 10.3389/fcimb.2017.00023 PubMed DOI PMC

Chautard E., Thierry-Mieg N., Ricard-Blum S. (2009). Interaction networks: from protein functions to drug discovery. A review. Pathol. Biol. 57, 324–333. 10.1016/j.patbio.2008.10.004 PubMed DOI

Chisanga D., Keerthikumar S., Mathivanan S., Chilamkurti N. (2017). Network tools for the analysis of proteomic data. Methods Mol. Biol. 1549, 177–197. 10.1007/978-1-4939-6740-7_14 PubMed DOI

Contreras M., Alberdi P., Mateos-Hernández L., Fernández de Mera I. G., García-Pérez A. L., Vancová M., et al. . (2017). Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection. Front. Cell. Infect. Microbiol. 7:307. 10.3389/fcimb.2017.00307 PubMed DOI PMC

de la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A. G., Estrada-Peña A., et al. . (2017). Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 7:114. 10.3389/fcimb.2017.00114 PubMed DOI PMC

de la Fuente J., Ayoubi P., Blouin E. F., Almazán C., Naranjo V., Kocan K. M. (2005). Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell. Microbiol. 7, 549–559. 10.1111/j.1462-5822.2004.00485.x PubMed DOI

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Brey R. (2015). Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasit. Vectors 8:538. 10.1186/s13071-015-1154-1 PubMed DOI PMC

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Kocan K. M. (2016). Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 24, 173–180. 10.1016/j.tim.2015.12.001 PubMed DOI

Dumler J. S., Sinclair S. H., Pappas-Brown V., Shetty A. C. (2016). Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Front. Cell. Infect. Microbiol. 6:97. 10.3389/fcimb.2016.00097 PubMed DOI PMC

Dumler J. S., Sinclair S. H., Shetty A. C. (2018). Alternative splicing of differentiated myeloid cell transcripts after Infection by Anaplasma phagocytophilum impacts a selective group of cellular programs. Front. Cell. Infect. Microbiol. 8:14. 10.3389/fcimb.2018.00014 PubMed DOI PMC

Dunne J. A., Lafferty K. D., Dobson A. P., Hechinger R. F., Kuris A. M., Martinez N. D., et al. (2002). Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567. 10.1371/journal.pbio.1001579 DOI

Estrada-Peña A., de la Fuente J., Ostfeld R. S., Cabezas-Cruz A. (2015). Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci. Rep. 5:10361. 10.1038/srep10361 PubMed DOI PMC

Gago S. (2014). Betweenness centrality in graphs, in Quantitative Graph Theory: Mathematical Foundations and Applications, eds Dehmer M., Emmert-Streib F. (Boca Raton: CRC Press; ), 233–257.

Gillet L. C., Navarro P., Tate S., Röst H., Selevsek N., Reiter L., et al. . (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11:O111.016717. 10.1074/mcp.O111.016717 PubMed DOI PMC

Girvan M., Newman M. E. J. (2002). Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826. 10.1073/pnas.122653799 PubMed DOI PMC

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7:10507. 10.1038/ncomms10507 PubMed DOI PMC

Horvath S. (2011). Weighted Network Analysis. Applications in Genomics and Systems Biology. New York, NY: Springer Book Press.

Huang B., Troese M. J., Ye S., Sims J. T., Galloway N. L., Borjesson D. L., et al. . (2010a). Anaplasma phagocytophilum APH_1387 is expressed throughout bacterial intracellular development and localizes to the pathogen-occupied vacuolar membrane. Infect. Immun. 78, 1864–1873. 10.1128/IAI.01418-09 PubMed DOI PMC

Huang B., Hubber A., McDonough J. A., Roy C. R., Scidmore M. A., Carlyon J. A., et al. . (2010b). The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell. Microbiol. 12, 1292–1307. 10.1111/j.1462-5822.2010.01468.x PubMed DOI PMC

Jordano P., Bascompte J., Olesen J. M. (2006). The ecological consequences of complex topology and nested structure in pollination webs, in Plant-Pollinator Interactions, eds Waser N. M., Ollerton J. (Chicago, IL: University of Chicago Press; ), 173–199.

Khanal S., Sultana H., Catravas J. D., Carlyon J. A., Neelakanta G. (2017). Anaplasma phagocytophilum infection modulates expression of megakaryocyte cell cycle genes through phosphatidylinositol-3-kinase signaling. PLoS ONE. 12:e0182898. 10.1371/journal.pone.0182898 PubMed DOI PMC

Kourtellis N., Alahakoon T., Simha R., Iamnitchi A., Tripathi R. (2013). Identifying high betweenness centrality nodes in large social networks. Soc. Netw. Anal. Mining 3, 899–914. 10.1007/s13278-012-0076-6 DOI

Kuijl C., Neefjes J. (2009). New insight into the everlasting host-pathogen arms race. Nat. Immunol. 10, 808–809. 10.1038/ni0809-808 PubMed DOI

Kuijl C., Savage N. D., Marsman M., Tuin A. W., Janssen L., Egan D. A., et al. . (2007). Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450, 725–730. 10.1038/nature06345 PubMed DOI

Lafferty K. D., Dobson A. P., Kuris A. M. (2006). Parasites dominate food web links. Proc. Natl. Acad. Sci. U.S.A. 103, 11211–11216. 10.1073/pnas.0604755103 PubMed DOI PMC

Ma H. W., Zeng A. P. (2003). The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430. 10.1093/bioinformatics/btg177 PubMed DOI

McCormick F. (1995). Ras-related proteins in signal transduction and growth control. Mol. Reprod. Dev. 42, 500–506. 10.1002/mrd.1080420419 PubMed DOI

Moody E. M., Bevilacqua P. C. (2003). Folding of a stable DNA motif involves a highly cooperative network of interactions. J. Am. Chem. Soc. 125, 16285–16293. 10.1021/ja038897y PubMed DOI

Munderloh U. G., Liu Y., Wang M., Chen C., Kurtti T. J. (1994). Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 80, 533–543. PubMed

Neelakanta G., Sultana H., Fish D., Anderson J. F., Fikrig E. (2010). Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. 10.1172/JCI42868 PubMed DOI PMC

O'Hara L., Livigni A., Theo T., Boyer B., Angus T., Wright D., et al. (2016). Modeling the structure and dynamics of biological pathways. PLoS Biol. 14:e1002530 10.1371/journal.pbio.1002530 PubMed DOI PMC

Perc M., Gómez-Gardeñes J., Szolnoki A., Floría L. M., Moreno Y. (2013). Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10:20120997. 10.1098/rsif.2012.0997 PubMed DOI PMC

Pichlmair A., Kandasamy K., Alvisi G., Mulhern O., Sacco R., Habjan M., et al. . (2012). Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487, 486–490. 10.1038/nature11289 PubMed DOI

Poirel C. L., Rahman A., Rodrigues R. R., Krishnan A., Addesa J. R., Murali T. M. (2013). Reconciling differential gene expression data with molecular interaction networks. Bioinformatics 29, 622–629. 10.1093/bioinformatics/btt007 PubMed DOI PMC

Rivas A. L., Fasina F. O., Hoogesteynm A. L., Konah S. N., Febles J. L., Perkins D. J., et al. . (2012). Connecting network properties of rapidly disseminating epizoonotics. PLoS ONE. 7:e39778. 10.1371/journal.pone.0039778 PubMed DOI PMC

Robinson I., Webber J., Eifrem E. (2015). Graph Databases: New Opportunities for Connected Data, 2nd Edn. Sebastopol, CA: O'Reilly Media Press.

Severo M. S., Choy A., Stephens K. D., Sakhon O. S., Chen G., Chung D. W., et al. . (2013). The E3 ubiquitin ligase XIAP restricts Anaplasma phagocytophilum colonization of Ixodes scapularis ticks. J. Infect. Dis. 208, 1830–1840. 10.1093/infdis/jit380 PubMed DOI PMC

Severo M. S., Pedra J. H. F., Ayllón N., Kocan K. M., de la Fuente J. (2015). Anaplasma, in Molecular Medical Microbiology, 2nd Edn, eds Tang Y. W., Sussman M., Liu D., Poxton I., Schwartzman J. (Amsterdam: Elsevier Academic Press; ), 2033–2042.

Shaw D. K., Wang X., Brown L. J., Chávez A. S., Reif K. E., Smith A. A., et al. . (2017). Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat. Commun. 8:14401. 10.1038/ncomms14401 PubMed DOI PMC

Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. . (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 207, 1727–1743. 10.1084/jem.20100276 PubMed DOI PMC

Taank V., Dutta S., Dasgupta A., Steeves T. K., Fish D., Anderson J. F., et al. . (2017). Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks. Sci. Rep. 7:13256. 10.1038/s41598-017-13559-x PubMed DOI PMC

Truchan H. K., VieBrock L., Cockburn C. L., Ojogun N., Griffin B. P., Wijesinghe D. S., et al. . (2016a). Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell. Microbiol. 18, 260–281. 10.1111/cmi.12500 PubMed DOI PMC

Truchan H. K., Cockburn C. L., Hebert K. S., Magunda F., Noh S. M., Carlyon J. A. (2016b). The pathogen-occupied vacuoles of Anaplasma phagocytophilum and Anaplasma marginale interact with the endoplasmic reticulum. Front. Cell. Infect. Microbiol. 6:22. 10.3389/fcimb.2016.00022 PubMed DOI PMC

Villar M., Popara M., Ayllón N., Fernández de Mera I. G., Mateos-Hernández L., Galindo R. C., et al. . (2014). A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS ONE. 9:e89564. 10.1371/journal.pone.0089564 PubMed DOI PMC

Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. . (2015). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics 14, 3154–3172. 10.1074/mcp.M115.051938 PubMed DOI PMC

Vinayagam A., Zirin J., Roesel C., Hu Y., Yilmazel B., Samsonova A. A., et al. . (2014). Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat. Methods 11, 94–99. 10.1038/nmeth.2733 PubMed DOI PMC

Xue J., Schmidt S. V., Sander J., Draffehn A., Krebs W., Quester I., et al. . (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288. 10.1016/j.immuni.2014.01.006 PubMed DOI PMC

Zhang B., Horvath S. (2005). A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4:17. 10.2202/1544-6115.1128 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks

. 2019 Jun 28 ; 12 (1) : 328. [epub] 20190628

Functional Evolution of Subolesin/Akirin

. 2018 ; 9 () : 1612. [epub] 20181113

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace