Histone Methyltransferase DOT1L is Involved in Larval Molting and Second Stage Nymphal Feeding in Ornithodoros Moubata

. 2020 Apr 01 ; 8 (2) : . [epub] 20200401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244625

Epigenetic mechanisms have not been characterized in ticks despite their importance as vectors of human and animal diseases worldwide. Our investigation identifies and functionally characterizes the orthologue of S-adenosylmethionine (SAM) binding methyltransferase enzyme, disruptor of telomeric silencing 1-like (DOT1L) in Ornithodoros moubata (OmDOT1L), a soft tick vector for the relapsing fever pathogen Borrelia duttonii and the African swine fever virus. The OmDOT1L tertiary structure was predicted and compared to the Homo sapiens DOT1L which had been co-crystalized with SGC0946, a DOT1L-specific inhibitor. The amino acid residues crucial for SAM and SGC0946 binding conserved in most DOT1L sequences available, are also conserved in OmDOT1L. Quantitative PCR of Omdot1l during O. moubata life stages showed that transcripts were significantly upregulated in first-stage nymphs. O. moubata larvae exposed to SGC0946 displayed high mortality during molting to first-stage nymphs. Furthermore, a significant decrease in weight was observed in second-stage nymphs fed on recombinant OmDOT1L-immunized rabbits. In contrast, artificial blood feeding supplemented with SGC0946 did not affect survival and reproductive performance of adult female ticks. We concluded that OmDOT1L plays an essential role in the regulation of larval molting and the feeding of O. moubata second-stage nymphs.

Zobrazit více v PubMed

Manzano-Román R., Díaz-Martín V., de la Fuente J., Pérez-Sánchez R. Soft Ticks as Pathogen Vectors: Distribution, Surveillance and Control. TechOpen. 2012;7:125–162.

Brites-Neto J., Duarte K.M.R., Martins T.F. Tick-borne infections in human and animal population worldwide. Vet. World. 2015;8:301–315. doi: 10.14202/vetworld.2015.301-315. PubMed DOI PMC

Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395. doi: 10.1038/cr.2011.22. PubMed DOI PMC

Singer M.S., Kahana A., Wolf A.J., Meisinger L.L., Peterson S.E., Goggin C., Mahowald M., Gottschling D.E. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics. 1998;150:613–632. PubMed PMC

Jenuwein T., Laible G., Dorn R., Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci. 1998;54:80–93. doi: 10.1007/s000180050127. PubMed DOI PMC

Feng Q., Wang H., Ng H.H., Erdjument-Bromage H., Tempst P., Struhl K., Zhang Y. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 2002;12:1052–1058. doi: 10.1016/S0960-9822(02)00901-6. PubMed DOI

Min J., Feng Q., Li Z., Zhang Y., Xu R., Hill C., Carolina N. Structure of the Catalytic Domain of Human DOT1L, a Non-SET Domain Nucleosomal Histone Methyltransferase. Cell. 2003;112:711–723. doi: 10.1016/S0092-8674(03)00114-4. PubMed DOI

Cheng X., Collins R.E., Zhang X. Structural and Sequence Motifs of Protein (Histone) Methylation Enzymes. Annu. Rev. Biophys. Biomol. Struct. 2005;34:267–294. doi: 10.1146/annurev.biophys.34.040204.144452. PubMed DOI PMC

van Leeuwen F., Gafken P.R., Gottschling D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109:745–756. doi: 10.1016/S0092-8674(02)00759-6. PubMed DOI

Shanower G.A. Characterization of the grappa Gene, the Drosophila Histone H3 Lysine 79 Methyltransferase. Genetics. 2004;169:173–184. doi: 10.1534/genetics.104.033191. PubMed DOI PMC

Jones B., Su H., Bhat A., Lei H., Bajko J., Hevi S., Baltus G.A., Kadam S., Zhai H., Valdez R., et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 2008:4. doi: 10.1371/journal.pgen.1000190. PubMed DOI PMC

Wood A., Shilatifard A. Advances in Protein Chemistry. Academic Press; Cambridge, MA, USA: 2004. Posttranslational Modifications of Histones by Methylation; pp. 201–222. PubMed

Yu W., Chory E.J., Wernimont A.K., Tempel W., Scopton A., Federation A., Marineau J.J., Qi J., Barsyte-Lovejoy D., Yi J., et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat. Commun. 2012;3:1–11. doi: 10.1038/ncomms2304. PubMed DOI

Kari V., Raul S.K., Henck J.M., Kitz J., Kramer F., Kosinsky R.L., Übelmesser N., Mansour W.Y., Eggert J., Spitzner M., et al. The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clin. Epigenetics. 2019;11:4. doi: 10.1186/s13148-018-0601-1. PubMed DOI PMC

Wen L., Fu L., Guo X., Chen Y., Shi Y.-B. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. FASEB J. 2015;29:385–393. doi: 10.1096/fj.14-252171. PubMed DOI PMC

Wen L., Fu L., Shi Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J. 2017;31:4821–4831. doi: 10.1096/fj.201700131R. PubMed DOI PMC

Matsuura K., Fujimoto K., Das B., Fu L., Lu C.D., Shi Y.-B. Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci. 2012;2:25. doi: 10.1186/2045-3701-2-25. PubMed DOI PMC

Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J.J., Pierce R., Villar M., de la Fuente J. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11:303–319. doi: 10.1080/15592294.2016.1163460. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Koressaar T., Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI

Koci J., Simo L., Park Y. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 2013;50:79–84. doi: 10.1603/ME12034. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Le S.Q., Gascuel O. An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Kim D.E., Chivian D., Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:526–531. doi: 10.1093/nar/gkh468. PubMed DOI PMC

Schrödinger Release 2020-1: Maestro. Schrödinger, LLC; New York, NY, USA: 2020.

Krull C., Böhme B., Clausen P.-H., Nijhof A.M. Optimization of an artificial tick feeding assay for Dermacentor reticulatus. Parasites Vectors. 2017;10:60. doi: 10.1186/s13071-017-2000-4. PubMed DOI PMC

Knorr S., Anguita J., Cortazar J.T., Hajdusek O., Kopáček P., Trentelman J.J., Kershaw O., Hovius J.W., Nijhof A.M. Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle. Front. Physiol. 2018;9:1696. doi: 10.3389/fphys.2018.01696. PubMed DOI PMC

Klafke G.M., Sabatini G.A., de Albuquerque T.A., Martins J.R., Kemp D.H., Miller R.J., Schumaker T.T.S. Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo, Brazil. Vet. Parasitol. 2006;142:386–390. doi: 10.1016/j.vetpar.2006.07.001. PubMed DOI

Santos T.R.B., Klafke G.M., Pappen F.G., Nizoli L.Q., Biegelmeyer P., Farias N.A.R. Comparison of three larval bioassays to evaluate susceptibility of Rhipicephalus (Boophilus) microplus to amitraz. Brazilian J. Vet. Parasitol. 2013;22:495–501. doi: 10.1590/S1984-29612013000400008. PubMed DOI

Webster A., Souza U.A., Martins J.R., Klafke G., Reck J., Schrank A. Comparative study between Larval Packet Test and Larval Immersion Test to assess the effect of Metarhizium anisopliae on Rhipicephalus microplus tick larvae. Exp. Appl. Acarol. 2018;74:455–461. doi: 10.1007/s10493-018-0235-1. PubMed DOI

Hartmann D., Šíma R., Konvičková J., Perner J., Kopáček P., Sojka D. Multiple Legumain Isoenzymes in Ticks. Int. J. Parasitol. 2018;48:167–178. doi: 10.1016/j.ijpara.2017.08.011. PubMed DOI

Artigas-Jerónimo S., Villar M., Cabezas-Cruz A., Valdés J.J., Estrada-Peña A., Alberdi P., de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol. 2018;9:1612. doi: 10.3389/fphys.2018.01612. PubMed DOI PMC

Jasinskas A., Barbour A.G. The Fc Fragment Mediates the Uptake of Immunoglobulin C From the Midgut to Hemolymph in the Ixodid Tick Amblyomma Americanum (Acari: Ixodidae) J. Med. Entomol. 2005;42:359–366. doi: 10.1093/jmedent/42.3.359. PubMed DOI

Oleaga A., Obolo-Mvoulouga P., Manzano-Román R., Pérez-Sánchez R. Functional Annotation and Analysis of the Ornithodoros moubata Midgut Genes Differentially Expressed After Blood Feeding. Ticks Tick Borne Dis. 2017;8:693–708. doi: 10.1016/j.ttbdis.2017.05.002. PubMed DOI

Buczek A., Bartosik K., Kuczyński P. Evaluation of the Effect of Various Concentrations of Selected Pyrethroids on the Development of Dermacentor Reticulatus Eggs and Larvae. Ann. Agric. Environ. Med. 2013;20:447–451. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...