Histone Methyltransferase DOT1L is Involved in Larval Molting and Second Stage Nymphal Feeding in Ornithodoros Moubata
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32244625
PubMed Central
PMC7349889
DOI
10.3390/vaccines8020157
PII: vaccines8020157
Knihovny.cz E-zdroje
- Klíčová slova
- DOT1L, Ornithodoros moubata, histone methyltransferase,
- Publikační typ
- časopisecké články MeSH
Epigenetic mechanisms have not been characterized in ticks despite their importance as vectors of human and animal diseases worldwide. Our investigation identifies and functionally characterizes the orthologue of S-adenosylmethionine (SAM) binding methyltransferase enzyme, disruptor of telomeric silencing 1-like (DOT1L) in Ornithodoros moubata (OmDOT1L), a soft tick vector for the relapsing fever pathogen Borrelia duttonii and the African swine fever virus. The OmDOT1L tertiary structure was predicted and compared to the Homo sapiens DOT1L which had been co-crystalized with SGC0946, a DOT1L-specific inhibitor. The amino acid residues crucial for SAM and SGC0946 binding conserved in most DOT1L sequences available, are also conserved in OmDOT1L. Quantitative PCR of Omdot1l during O. moubata life stages showed that transcripts were significantly upregulated in first-stage nymphs. O. moubata larvae exposed to SGC0946 displayed high mortality during molting to first-stage nymphs. Furthermore, a significant decrease in weight was observed in second-stage nymphs fed on recombinant OmDOT1L-immunized rabbits. In contrast, artificial blood feeding supplemented with SGC0946 did not affect survival and reproductive performance of adult female ticks. We concluded that OmDOT1L plays an essential role in the regulation of larval molting and the feeding of O. moubata second-stage nymphs.
Department of Virology Veterinary Research Institute Hudcova 70 62100 Brno Czech Republic
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Institute of Biological Sciences SAGE University Indore 452020 India
Zobrazit více v PubMed
Manzano-Román R., Díaz-Martín V., de la Fuente J., Pérez-Sánchez R. Soft Ticks as Pathogen Vectors: Distribution, Surveillance and Control. TechOpen. 2012;7:125–162.
Brites-Neto J., Duarte K.M.R., Martins T.F. Tick-borne infections in human and animal population worldwide. Vet. World. 2015;8:301–315. doi: 10.14202/vetworld.2015.301-315. PubMed DOI PMC
Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395. doi: 10.1038/cr.2011.22. PubMed DOI PMC
Singer M.S., Kahana A., Wolf A.J., Meisinger L.L., Peterson S.E., Goggin C., Mahowald M., Gottschling D.E. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics. 1998;150:613–632. PubMed PMC
Jenuwein T., Laible G., Dorn R., Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci. 1998;54:80–93. doi: 10.1007/s000180050127. PubMed DOI PMC
Feng Q., Wang H., Ng H.H., Erdjument-Bromage H., Tempst P., Struhl K., Zhang Y. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 2002;12:1052–1058. doi: 10.1016/S0960-9822(02)00901-6. PubMed DOI
Min J., Feng Q., Li Z., Zhang Y., Xu R., Hill C., Carolina N. Structure of the Catalytic Domain of Human DOT1L, a Non-SET Domain Nucleosomal Histone Methyltransferase. Cell. 2003;112:711–723. doi: 10.1016/S0092-8674(03)00114-4. PubMed DOI
Cheng X., Collins R.E., Zhang X. Structural and Sequence Motifs of Protein (Histone) Methylation Enzymes. Annu. Rev. Biophys. Biomol. Struct. 2005;34:267–294. doi: 10.1146/annurev.biophys.34.040204.144452. PubMed DOI PMC
van Leeuwen F., Gafken P.R., Gottschling D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109:745–756. doi: 10.1016/S0092-8674(02)00759-6. PubMed DOI
Shanower G.A. Characterization of the grappa Gene, the Drosophila Histone H3 Lysine 79 Methyltransferase. Genetics. 2004;169:173–184. doi: 10.1534/genetics.104.033191. PubMed DOI PMC
Jones B., Su H., Bhat A., Lei H., Bajko J., Hevi S., Baltus G.A., Kadam S., Zhai H., Valdez R., et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 2008:4. doi: 10.1371/journal.pgen.1000190. PubMed DOI PMC
Wood A., Shilatifard A. Advances in Protein Chemistry. Academic Press; Cambridge, MA, USA: 2004. Posttranslational Modifications of Histones by Methylation; pp. 201–222. PubMed
Yu W., Chory E.J., Wernimont A.K., Tempel W., Scopton A., Federation A., Marineau J.J., Qi J., Barsyte-Lovejoy D., Yi J., et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat. Commun. 2012;3:1–11. doi: 10.1038/ncomms2304. PubMed DOI
Kari V., Raul S.K., Henck J.M., Kitz J., Kramer F., Kosinsky R.L., Übelmesser N., Mansour W.Y., Eggert J., Spitzner M., et al. The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clin. Epigenetics. 2019;11:4. doi: 10.1186/s13148-018-0601-1. PubMed DOI PMC
Wen L., Fu L., Guo X., Chen Y., Shi Y.-B. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. FASEB J. 2015;29:385–393. doi: 10.1096/fj.14-252171. PubMed DOI PMC
Wen L., Fu L., Shi Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J. 2017;31:4821–4831. doi: 10.1096/fj.201700131R. PubMed DOI PMC
Matsuura K., Fujimoto K., Das B., Fu L., Lu C.D., Shi Y.-B. Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci. 2012;2:25. doi: 10.1186/2045-3701-2-25. PubMed DOI PMC
Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J.J., Pierce R., Villar M., de la Fuente J. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11:303–319. doi: 10.1080/15592294.2016.1163460. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Koressaar T., Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI
Koci J., Simo L., Park Y. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 2013;50:79–84. doi: 10.1603/ME12034. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Le S.Q., Gascuel O. An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI
Kim D.E., Chivian D., Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:526–531. doi: 10.1093/nar/gkh468. PubMed DOI PMC
Schrödinger Release 2020-1: Maestro. Schrödinger, LLC; New York, NY, USA: 2020.
Krull C., Böhme B., Clausen P.-H., Nijhof A.M. Optimization of an artificial tick feeding assay for Dermacentor reticulatus. Parasites Vectors. 2017;10:60. doi: 10.1186/s13071-017-2000-4. PubMed DOI PMC
Knorr S., Anguita J., Cortazar J.T., Hajdusek O., Kopáček P., Trentelman J.J., Kershaw O., Hovius J.W., Nijhof A.M. Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle. Front. Physiol. 2018;9:1696. doi: 10.3389/fphys.2018.01696. PubMed DOI PMC
Klafke G.M., Sabatini G.A., de Albuquerque T.A., Martins J.R., Kemp D.H., Miller R.J., Schumaker T.T.S. Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo, Brazil. Vet. Parasitol. 2006;142:386–390. doi: 10.1016/j.vetpar.2006.07.001. PubMed DOI
Santos T.R.B., Klafke G.M., Pappen F.G., Nizoli L.Q., Biegelmeyer P., Farias N.A.R. Comparison of three larval bioassays to evaluate susceptibility of Rhipicephalus (Boophilus) microplus to amitraz. Brazilian J. Vet. Parasitol. 2013;22:495–501. doi: 10.1590/S1984-29612013000400008. PubMed DOI
Webster A., Souza U.A., Martins J.R., Klafke G., Reck J., Schrank A. Comparative study between Larval Packet Test and Larval Immersion Test to assess the effect of Metarhizium anisopliae on Rhipicephalus microplus tick larvae. Exp. Appl. Acarol. 2018;74:455–461. doi: 10.1007/s10493-018-0235-1. PubMed DOI
Hartmann D., Šíma R., Konvičková J., Perner J., Kopáček P., Sojka D. Multiple Legumain Isoenzymes in Ticks. Int. J. Parasitol. 2018;48:167–178. doi: 10.1016/j.ijpara.2017.08.011. PubMed DOI
Artigas-Jerónimo S., Villar M., Cabezas-Cruz A., Valdés J.J., Estrada-Peña A., Alberdi P., de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol. 2018;9:1612. doi: 10.3389/fphys.2018.01612. PubMed DOI PMC
Jasinskas A., Barbour A.G. The Fc Fragment Mediates the Uptake of Immunoglobulin C From the Midgut to Hemolymph in the Ixodid Tick Amblyomma Americanum (Acari: Ixodidae) J. Med. Entomol. 2005;42:359–366. doi: 10.1093/jmedent/42.3.359. PubMed DOI
Oleaga A., Obolo-Mvoulouga P., Manzano-Román R., Pérez-Sánchez R. Functional Annotation and Analysis of the Ornithodoros moubata Midgut Genes Differentially Expressed After Blood Feeding. Ticks Tick Borne Dis. 2017;8:693–708. doi: 10.1016/j.ttbdis.2017.05.002. PubMed DOI
Buczek A., Bartosik K., Kuczyński P. Evaluation of the Effect of Various Concentrations of Selected Pyrethroids on the Development of Dermacentor Reticulatus Eggs and Larvae. Ann. Agric. Environ. Med. 2013;20:447–451. PubMed