Response of Normal and Low-Phytate Genotypes of Pea (Pisum sativum L.) on Phosphorus Foliar Fertilization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1810072
Ministerstvo Zemědělství
PubMed
34451655
PubMed Central
PMC8399731
DOI
10.3390/plants10081608
PII: plants10081608
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll content, fluorescence parameters, foliar application, pea, seed nutrient content, seed quality, seed yield,
- Publikační typ
- časopisecké články MeSH
Phosphorus (P) is an important nutrient in plant nutrition. Its absorption by plants from the soil is influenced by many factors. Therefore, a foliar application of this nutrient could be utilized for the optimal nutrition state of plants. The premise of the study is that foliar application of phosphorus will increase the yield of normal-phytate (npa) cultivars (CDC Bronco a Cutlass) and low-phytate (lpa) lines (1-2347-144, 1-150-81) grown in soils with low phosphorus supply and affect seed quality depending on the ability of the pea to produce phytate. A graded application of phosphorus (H₃PO₄) in four doses: without P (P0), 27.3 mg P (P1), 54.5 mg P (P2), and 81.8 mg P/pot (P3) realized at the development stages of the 6th true leaf led to a significant increase of chlorophyll contents, and fluorescence parameters of chlorophyll expressing the CO2 assimilation velocity. The P fertilization increased the yield of seeds significantly, except the highest dose of phosphorus (P3) at which the yield of the npa cultivars was reduced. The line 1-2347-144 was the most sensible to the P application when the dose P3 increased the seed production by 42.1%. Only the lpa line 1-150-81 showed a decreased tendency in the phytate content at the stepped application of the P nutrition. Foliar application of phosphorus significantly increased ash material in seed, but did not tend to affect the protein and mineral content of seeds. Only the zinc content in seeds was significantly reduced by foliar application of P in npa and lpa pea genotypes. It is concluded from the present study that foliar phosphorus application could be an effective way to enhance the pea growth in P-deficient condition with a direct effect on seed yield and quality.
Zobrazit více v PubMed
Kosev V., Pachev I. Genetic Improvement of field pea (Pisum sativum L.) in Bulgaria. Field Veg. Crop Res. 2010;47:403–408.
Tesfaye M., Liu J., Allan D.L., Vance C.P. Genomic and genetic control of phosphate stress in legumes. Plant Physiol. 2007;144:594–603. doi: 10.1104/pp.107.097386. PubMed DOI PMC
Rotaru V., Sinclair T.R. Influence of plant phosphorus and iron concentrations on growth of soybean. J. Plant Nutr. 2009;32:1513–1526. doi: 10.1080/01904160903093828. DOI
Mitran T., Meena R.S., Lal R., Layek J., Kumar S., Datta R. Role of Soil Phosphorus on Legume Production. In: Meena R.S., Das A., Yadav G.S., Lal R., editors. Legumes for Soil Health and Sustainable Management. Springer; Singapore: New York, NY, USA: 2018. pp. 487–510.
Ejaz S., Batool S., Anjum M.A., Naz S., Qayyum M.F., Naqqash T., Shah K.H., Ali S. Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Sci. Hortic. 2020;270:109401. doi: 10.1016/j.scienta.2020.109401. DOI
Agegnehu G., Fessehaie R. Response of faba bean to phosphate fertilizer and weed control on Nitisols of Ethiopian highlands. Ital. J. Agron. 2006;1:281–290. doi: 10.4081/ija.2006.281. DOI
Khadraji A., Bouhadi M., Ghoulam C. Effect of Soil Available Phosphorus Levels on Chickpea (Cicer arietinum L.)—Rhizobia Symbiotic Association. Legum. Res. 2020;43:878–883.
Alene A.A., Raffi M.M., Tiruneh K.J. Phosphorus use efficiency, yield and nodulation of mung bean (Vigna radiata L.) as influenced by the rate of phosphorus and Rhizobium strains inoculation in Metema district, Ethiopia. J. Plant Nutr. 2021;44:1300–1315. doi: 10.1080/01904167.2020.1849301. DOI
Bi Y., Zhou P., Li S., Wei Y., Xiong X., Shi Y., Liu N., Zhang Y. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Res. 2019;244:107636. doi: 10.1016/j.fcr.2019.107636. DOI
Qader H.R. Effect of foliar application of Phosphorus on Growth and development of Vicia faba L. under Magnesium levels. ZANCO J. Pure Appl. Sci. 2019;31:173–179.
Froese S., Wiens J.T., Warkentin T., Schoenau J.J., Beres B. Response of canola, wheat, and pea to foliar phosphorus fertilization at a phosphorus-deficient site in eastern Saskatchewan. Can. J. Plant Sci. 2020;100:642–652. doi: 10.1139/cjps-2019-0276. DOI
Gibson R.S., Yeudall F., Drost N., Mtitimuni B., Cullinan T. Dietary interventions to prevent zinc deficiency. Am. J. Clin. Nutr. 1998;68:484S–487S. doi: 10.1093/ajcn/68.2.484S. PubMed DOI
Turnlund J.R., King J.C., Gong B., Keyes W.R., Michel M.C. A stable isotope study of copper absorption in young men: Effect of phytate and a-cellulose. Am. J. Clin. Nutr. 1985;42:18–23. doi: 10.1093/ajcn/42.1.18. PubMed DOI
Raboy V. Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry. 2003;64:1033–1043. doi: 10.1016/S0031-9422(03)00446-1. PubMed DOI
Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 2009;177:281–296. doi: 10.1016/j.plantsci.2009.06.012. DOI
Wilcox J.R., Premachandra G.S., Young K.A., Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop. Sci. 2000;40:1601–1605. doi: 10.2135/cropsci2000.4061601x. DOI
Warkentin T.D., Delgerjav O., Arganosa G., Rehman A.U., Bett K.E., Anbessa Y., Rossnagel B., Raboy V. Development and Characterization of Low-Phytate Pea. Crop. Sci. 2012;52:74–78. doi: 10.2135/cropsci2011.05.0285. DOI
Raboy V., Dickinson D.B. Phytic acid levels in seeds of Glycine max and G. soja as influenced by phosphorus status. Crop. Sci. 1993;33:1300–1305. doi: 10.2135/cropsci1993.0011183X003300060036x. DOI
Miller G.A., Youngs V.L., Oplinger E.S. Effect of available soil-phosphorus and environment on the phytic acid concentration in oats. Cereal Chem. 1980;57:192–194.
Saneoka H., Koba T. Plant growth and phytic acid accumulation in seed as affected by phosphorus application in maize (Zea mays L.) Grassl. Sci. 2003;48:485–489.
Fernández V., Brown P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013;4:289. doi: 10.3389/fpls.2013.00289. PubMed DOI PMC
Noack S.R., McBeath T.M., McLaughlin M.J. Potential for foliar phosphorus fertilization of dryland cereal crops: A review. Crop. Pasture Sci. 2011;62:659–669. doi: 10.1071/CP10080_ER. DOI
Ling F., Silberbush M. Response of maize to foliar vs. soil application of nitrogen-phosphorus-potassium fertilizers. J. Plant Nutr. 2007;1:2333–2342. doi: 10.1081/PLN-120014698. DOI
Mosali J., Desta K., Teal R., Freeman K., Martin K., Lawless J., Raun W. Effect of foliar application of phosphorus on winter wheat grain yield, phosphorus uptake and use efficiency. J. Plant Nutr. 2006;29:2147–2163. doi: 10.1080/01904160600972811. DOI
Waraich E.A., Ahmad Z., Ahmad R., Saifullah, Ashraf M.Y. Foliar Applied Phosphorous Enhanced Growth, Chlorophyll Contents, Gas Exchange Attributes and PUE in Wheat (Triticum aestivum L.) J. Plant Nutr. 2015;38:1929–1943. doi: 10.1080/01904167.2015.1043377. DOI
Thapar S., Sekhon B.S., Atwal A., Singh R. Phosphorus assimilation in mycorrhizal moong (Vigna radita L.) plants under different phosphorus levels. Plant Sci. 1990;71:209–214. doi: 10.1016/0168-9452(90)90010-L. DOI
Lopez-Cantarero I., Lorente F.A., Romero L. Are chlorophylls good indicators of nitrogen and phosphorus levels? J. Plant Nutr. 1994;17:979–990. doi: 10.1080/01904169409364782. DOI
Fan L., Silberbush M. Response of maize to foliar vs. soil application of nitrogen, phosphorus and potassium fertilizers. J. Plant Nutr. 2002;25:2333–2342.
Shubhra J.D., Goswami C.L., Munjal R. Influence of phosphorus application on water relations, biochemical parameters and gum content in cluster bean under water deficit. Biol. Plant. 2004;48:445–448. doi: 10.1023/B:BIOP.0000041101.87065.c9. DOI
Marschner P. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; Cambridge, MA, USA: 2012. p. 672.
Carstensen A., Herdean A., Schmidt S.B., Sharma A., Spetea C., Pribil M., Husted S. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 2018;177:271–284. doi: 10.1104/pp.17.01624. PubMed DOI PMC
Xu H.X., Weng X.Y., Yang Y. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ. J. Plant Physiol. 2007;54:741–748. doi: 10.1134/S1021443707060040. DOI
Xing D., Wu Y. Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Bot. Stud. 2014;55:60. doi: 10.1186/s40529-014-0060-8. PubMed DOI PMC
Taliman N.A., Dong Q., Echigo K., Raboy V., Saneoka H. Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants. 2019;8:119. doi: 10.3390/plants8050119. PubMed DOI PMC
Fryer M.J., Andrews J.R., Oxborough K., Blowers D.A., Baker N.R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 1998;116:571–580. doi: 10.1104/pp.116.2.571. PubMed DOI PMC
Thuynsma R., Kleinert A., Kossmann J., Valentine A.J., Hills P.N. The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. S. Afr. J. Bot. 2016;104:244–248. doi: 10.1016/j.sajb.2016.03.001. DOI
Shunmugam A.S.K., Bock C., Arganosa G.C., Georges F., Gray G.R., Warkentin T.D. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants. Plants. 2015;4:1–26. doi: 10.3390/plants4010001. PubMed DOI PMC
Khan M.J., Muhammad D., Fahad S., Adnan M., Wahid F., Alamri S., Khan F., Dawar K.M., Irshad I., Danish S., et al. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants. 2020;9:1389. PubMed PMC
Rady M.M., El-Shewy A.A., Seif El-Yazal M.A., Abdelaal K.E.S. Response of Salt-Stressed Common Bean Plant Performances to Foliar Application of Phosphorus (MAP) Int. Lett. Nat. Sci. 2018;72:7–20. doi: 10.18052/www.scipress.com/ILNS.72.7. DOI
Singh U., Singh B. Effect of basal and foliar application of diammonium phosphate in cognizance with phosphate-solubilizing bacteria on growth, yield and quality of rainfed chickpea (Cicer arietinum) Indian J. Agron. 2014;59:427–432.
Krasilnikoff G., Gahoonia T., Erik-Nelson N. Variation in phosphorus uptake by genotypes of cowpea (Vigna unguiculata L. Walp) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil. 2003;251:83–91.
Bohn L., Meyer A.S., Rasmussen S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B. 2008;9:165–191. doi: 10.1631/jzus.B0710640. PubMed DOI PMC
Klimek-Kopyra A., Hakl J., Skladanka J., Dłużniewska J. Influence of phosphorus nutrition on seed yield and quality of pea (Pisum sativum L.) cultivars across different seasons. Ital. J. Agron. 2019;14:208–213. doi: 10.4081/ija.2019.1411. DOI
Musa E.M., Elsheikh E.A.E., Ahmed I.A.M., Babiker E.E. Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds. Front. Agric. China. 2011;5:543–557. doi: 10.1007/s11703-011-1147-6. DOI
Kyei-Boahen S., Savala C.E.N., Chikoye D., Abaidoo R. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments. Front. Plant Sci. 2017;8:646. doi: 10.3389/fpls.2017.00646. PubMed DOI PMC
Malakondaiah N., Rajeswararao G. Effect of foliar application of phosphorus on growth and mineral composition in peanut plants (Arachis hypogaea L.) under salt-stress. Plant Soil. 1979;52:41–48. doi: 10.1007/BF02197730. DOI
Shankarlingappa B.C., Shivraj B., Vishwanath K.P. Interaction effect of phosphorus and sulphur on uptake of nitrogen, phosphorus, potassium and sulphur by pigeonpea (Cajanus cajan) Indian J. Agron. 2000;45:348–352.
Kumar P., Kumar P., Singh T., Singh A.K., Yadav R.I. Effect of different potassium levels on mungbean under custard apple based Agri-Horti system. Afr. J. Agric. Res. 2014;9:728–734.
Kumar P., Pandey S.K., Kumar P. Effect of Different Phosphorus Levels on Nutrient Content, Uptake and Economics of Urd bean under Custard Apple based Agri-Horti System. J. AgriSearch. 2015;2:88–93.
Zhang Y.Q., Deng Y., Chen R.Y., Cui Z.L., Chen X.P., Yost R., Zhang F.S., Zou C.Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant Soil. 2012;361:143–152. doi: 10.1007/s11104-012-1238-z. DOI
Ova E.A., Kutman U.B., Ozturk L., Cakmak I. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil. 2015;393:147–162. doi: 10.1007/s11104-015-2483-8. DOI
Warkentin T., Vandenberg A., Banniza S., Slinkard A. CDC Bronco field pea. Can. J. Plant Sci. 2005;85:649–650. doi: 10.4141/P04-160. DOI
Blade S., Warkentin T., Vandenberg A. Cutlass field pea. Can. J. Plant Sci. 2004;84:533–534.
Zbíral J. Analysis of Soils, I. Unified Techniques. 2nd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2002. p. 197. (In Czech)
Netto A.L., Campostrini E., Goncalves de Oliverira J., Bressan-Smith R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005;104:199–209. doi: 10.1016/j.scienta.2004.08.013. DOI
Škarpa P., Klofáč D., Krčma F., Šimečková J., Kozáková Z. Effect of Plasma Activated Water Foliar Application on Selected Growth Parameters of Maize (Zea mays L.) Water. 2020;12:3545. doi: 10.3390/w12123545. DOI
Genty B., Briantais J.M., Baker N.R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Lichtenthaler H.K., Buschmann C., Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica. 2005;43:379–393. doi: 10.1007/s11099-005-0062-6. DOI
McKie V.A., McCleary B.V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Food and Animal Feeds. J. AOAC Int. 2016;99:738–743. doi: 10.5740/jaoacint.16-0029. PubMed DOI
Mlejnkova V., Horky P., Kominkova M., Skladanka J., Hodulikova L., Adam V., Mlcek J., Jurikova T., Sochor J. Biogenic amines and hygienic quality of lucerne silage. Open Life Sci. 2016;11:280–286. doi: 10.1515/biol-2016-0037. DOI
Zbíral J. Plant Analysis: Integrated Work Procedures. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2005. p. 192. (In Czech)
StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. [(accessed on 5 May 2021)];2013 Available online: www.statsoft.com.