seed nutrient content
Dotaz
Zobrazit nápovědu
... Contents. Obsah. PRACTICAL PART. PRAKTICKÁ ČÁST -- Chapter I. Kapitola I. Healthy living. ... ... Units 39 -- Nutrient deficiencies. The health-conscious cook. Nedostatek živin. Zdravé vaření. ... ... Turning food into nutrients. Energy. Jak vaše tělo využívá potravu. Proměna potravin na živiny. ... ... Unit 18 -- I■ -- Medicinal nuts and seeds. Léčivé ořechy a semena. Chapter IV. Kapitola IV. ...
První vydání 682 stran ; 23 cm
BACKGROUND: Plant-growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi have the ability to enhance the growth, fitness, and quality of various agricultural crops, including cowpea. However, field trials confirming the benefits of microbes in large-scale applications using economically viable and efficient inoculation methods are still scarce. Microbial seed coating has a great potential for large-scale agriculture through the application of reduced amounts of PGPR and AM fungi inocula. Thus, in this study, the impact of seed coating with PGPR, Pseudomonas libanensis TR1 and AM fungus, Rhizophagus irregularis (single or multiple isolates) on grain yield and nutrient content of cowpea under low-input field conditions was evaluated. RESULTS: Seed coating with P. libanensis + multiple isolates of R. irregularis (coatPMR) resulted in significant increases in shoot dry weight (76%), and in the number of pods and seeds per plant (52% and 56%, respectively) and grain yield (56%), when compared with non-inoculated control plants. However, seed coating with P. libanensis + R. irregularis single-isolate (coatPR) did not influence cowpea grain yield. Grain lipid content was significantly higher (25%) in coatPMR plants in comparison with control. Higher soil organic matter and lower pH were observed in the coatPMR treatment. CONCLUSIONS: Our findings indicate that cowpea field productivity can be improved by seed coating with PGPR and multiple AM fungal isolates under low-input agricultural systems. © 2019 Society of Chemical Industry.
Orchids are distributed around the world, however, the factors shaping their specific distribution and habitat preferences are largely unknown. Moreover, many orchids are at risk of becoming threatened as landscapes change, sometimes declining without apparent reason. One important factor affecting plant distribution is nutrient levels in the environment. Nitrates can inhibit not only orchid growth and persistence, but also seed germination. We used in vitro axenic cultures to exactly determine the germination sensitivity of seven orchid species to nitrates and correlated this with soil properties of the natural sites and with the species' habitat preferences. We found high variation in response to nitrate between species. Orchids from oligotrophic habitats were highly sensitive, while orchids from more eutrophic habitats were almost insensitive. Sensitivity to nitrate was also associated with soil parameters that indicated a higher nitrification rate. Our results indicate that nitrate can affect orchid distribution via direct inhibition of seed germination. Nitrate levels in soils are increasing rapidly due to intensification of agricultural processes and concurrent soil pollution, and we propose this increase could cause a decline in some orchid species.
The effect of hempseed in the diet of laying hens was evaluated at 0, 30, 60 and 90 g/kg concentrations. The aim of the study was to determine the effect of dietary treatment on the performance of hens, the physical characteristics of egg quality, the concentrations of α- and γ-tocopherol and the carotenoid and cholesterol contents of egg yolks, together with the breaking strength of tibial measurements. In light of the obtained results, our study aimed to address the optimal dietary level of hempseed in laying hen diets. Lohmann Brown hens (n = 240) were divided into 4 dietary treatment groups (6 cages per treatment) with 10 hens per cage. The experiment lasted for 12 weeks. The level of nutrients in all diets (wheat-corn) was well balanced. The dietary metabolisable energy was adjusted using rapeseed oil. The addition of 30 g/kg of hempseed to the diet significantly increased (P˂0.001) egg production and egg mass. Alpha-tocopherol increased significantly (P = 0.002) only in the case of the 60 g/kg hempseed level (101 mg/kg dry matter (DM) versus 83 mg/ kg DM in the control group). In contrast, the level of γ-tocopherol increased gradually from 11 mg/kg DM in the control to 29, 39 and 43 mg/kg DM at the 30, 60 and 90 g/kg levels of dietary hempseed, respectively. The concentrations of beta carotene, zeaxanthin and lutein in egg yolks were not influenced by the dietary treatment. Hempseed at 90 g/kg (P = 0.036) decreased egg shell thickness without affecting its strength. The addition of hempseed decreased (P˂0.001) the cholesterol concentration in the egg yolks in all experimental groups. The addition of 30, 60 and 90 g hempseed increased (P˂0.001) the breaking strength of the tibia to 354, 352 and 350 N, respectively, compared to 297 N in the control group. The highest level of hempseed in the diet positively influenced the Ca concentration in the tibia (P = 0.021). The concentration of P in the tibia was negatively affected in the 60 to 90 g/kg hempseed treatments (P˂0.001). Eggs are a significant source of α-tocopherol. Based on our results, there is a possibility for enrichment of egg yolks with γ-tocopherol, with all of its associated health benefits, by the addition of hempseed to the diet of laying hens. Another significant benefit of hempseed is its effect on the breaking strength of the tibia, which can help with crucial problems in the commercial breeding of laying hens.
- MeSH
- Cannabis * MeSH
- gama-tokoferol metabolismus MeSH
- krmivo pro zvířata * MeSH
- kur domácí růst a vývoj MeSH
- semena rostlinná * MeSH
- tibie metabolismus MeSH
- vaječný žloutek metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.
- MeSH
- dioxygenasy genetika metabolismus MeSH
- geneticky modifikované rostliny MeSH
- genový knockdown MeSH
- kyselina abscisová genetika metabolismus MeSH
- listy rostlin fyziologie MeSH
- ovoce genetika růst a vývoj MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Solanum lycopersicum genetika růst a vývoj MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- tma MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4°C in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4°C for 210 days were morphologically identical to seedlings grown at 23°C for 21 days. After 400 days, seedlings grown at 4°C were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23°C. Tall fescue exposed to prolonged period at 4°C showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23°C were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue.
- MeSH
- alfa-amylasy metabolismus MeSH
- buněčná stěna metabolismus fyziologie MeSH
- časové faktory MeSH
- Festuca metabolismus fyziologie MeSH
- fyziologická adaptace fyziologie účinky záření MeSH
- fyziologický stres fyziologie MeSH
- gibereliny metabolismus MeSH
- kořeny rostlin metabolismus fyziologie MeSH
- kotyledon metabolismus fyziologie MeSH
- kyselina abscisová metabolismus MeSH
- lignin metabolismus MeSH
- nízká teplota MeSH
- rostlinné proteiny metabolismus MeSH
- sacharidy analýza MeSH
- semenáček fyziologie MeSH
- světlo MeSH
- tma MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Mák je velmi starou plodinou. VEvropě se pěstuje jako potravina od středověku. Česká republika je největším světovým producentem makového semene. Dlouhá tradice pěstování je spojena s domácím šlechtěním a následnou registrací odrůd. Situaci vpěstování máku neodpovídá stav vjeho využití ve výživě. Uplatnění máku včeské kuchyni se sice zdá tradiční, ale spotřeba je nízká. Povědomost o výživové hodnotě máku je nízká a výzkum v této oblasti u nás prakticky neprobíhá. Podrobnější údaje o obsazích jednotlivých živin jsou k dispozici pouze ze zahraničních zdrojů. Mák je přitom významným zdrojem tuku, tokoferolů, kvalitních bílkovin, vlákniny a minerálních látek zvláště vápníku. Budoucnost uplatnění máku v české kuchyni je tak nejasná, bylo by třeba, aby se vědecké instituce (vysoké školy) věnovaly výzkumu v oblasti nutriční hodnoty a dalších vlastností máku a odpovědné instituce jako jsou ministerstva zemědělství a zdravotnictví více podporovaly osvětu v oblasti využití máku v lidské výživě.
The poppy is a very old crop. In Europe it is grown as food from the Middle Ages. Czech Republic is the world's largest producer of poppy seed. A long tradition of cultivation is associated with domestic breeding and subsequent registration of varieties. The situation in poppy cultivation does not match the status of its use in nutrition. Application of poppy in Czech cuisine would appear traditional but consumption is low. Awareness of the dietetic value of the poppy is low and research in this field in our country practically does not take place. More detailed information on the contents of individual nutrients are available only from foreign sources. Poppy seed is an important source of fat, tocopherol, high quality protein, fiber and minerals, particularly calcium. Future application of poppy in Czech cuisine is so vague, it would need to make scientific institutions (universities) research efforts in the field of nutritional value and other characteristics of poppy and accountable institutions such as Ministry of Agriculture and Ministry of Health more support for public education about the use of poppy in human nutrition.
BACKGROUND: The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood. AIMS AND METHODS: The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field) with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities. KEY RESULTS: The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes in the AMF communities are the most likely drivers of the observed changes. The effects of other soil biota, however, cannot be fully excluded. CONCLUSIONS: These results suggest that the availability of soil fungi may not be the most important limiting factor for the establishment of grassland species in abandoned fields if we manage to reduce the intensity of competition at these sites e.g., by mowing or grazing.
- MeSH
- mikrobiální společenstva fyziologie MeSH
- mykorhiza fyziologie MeSH
- pastviny * MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
... Contents -- Preface ix -- PRACTICAL PART -- Chapter I Healthy living -- Unit I - Fit for life. ... ... Yoga 17 -- Unit 4 - Nutritional know-how 23 -- Unit 5 - Nutrient deficiencies. ... ... Turning food into nutrients. Energy 46 -- Unit 2 - Proteins. Fats 55 -- Unit 3 - Carbohydrates. ... ... Medicinal beans 223 -- Unit 18 - Medicinal nuts and seeds 230 -- Chapter IV -- Good cooking made easy ...
ix, 663 stran ; 23 cm
- Klíčová slova
- angličtina,
- MeSH
- lingvistika MeSH
- nutriční terapie MeSH
- terminologie jako téma MeSH
- Publikační typ
- slovníky MeSH
- terminologické slovníky MeSH
- učebnice MeSH
Physiology, oxidative stress and production of metabolites in Hypericum perforatum exposed to moderate Cd and/or La concentration (10 μM) were studied. La evoked increase in reactive oxygen species, malondialdehyde and proline but suppressed growth, tissue water content, glutathione, ascorbic acid and affected mineral nutrient contents more than Cd while the impact of Cd+La was not synergistic. Similar trend was observed at the level of superoxide dismutase gene expression. Shoot Cd amount increased in Cd+La while only root La increased in the same treatment. Extensive quantification of secondary metabolites revealed that La affected phenolic acids more pronouncedly than Cd in shoots and roots. Flavonols were suppressed by La that could contribute to the appearance of oxidative damage. Procyanidins increased in response to La in the shoots but decreased in the roots. Metabolic responses in Cd+La treatment resembled those of La treatment (almost identically in the roots). Phenylalanine ammonia-lyase activity was mainly suppressed by La. The presence of La also depleted amount of hypericin and expression of its putative gene (hyp-1) showed similar trend but accumulation of hyperforin increased under Cd or La excess. Clear differences in the stem and root anatomy in response to Cd or La were also found. Overall, H. perforatum is La-sensitive species and rather Cd ameliorated negative impact of La.
- MeSH
- biomasa MeSH
- flavonoidy metabolismus MeSH
- fluorescenční mikroskopie MeSH
- hydroxybenzoáty metabolismus MeSH
- kadmium toxicita MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- lanthan toxicita MeSH
- látky znečišťující životní prostředí toxicita MeSH
- oxidační stres účinky léků MeSH
- semenáček účinky léků růst a vývoj metabolismus MeSH
- třezalka účinky léků růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH