A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model

. 2020 Feb 08 ; 8 (1) : . [epub] 20200208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32046307

Grantová podpora
BFU2016-79892-P Ministerio de Economía, Industria y Competitividad (Spain)

The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR-protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2-protein interactions in the regulation of the NF-κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB.

Vyjádření znepokojení v

PubMed

Zobrazit více v PubMed

Jeffries S. When two tribes meet: Collaborations between artists and scientists. [(accessed on 1 August 2019)];The Guardian. 2011 Aug 21; Available online: https://www.theguardian.com/artanddesign/2011/aug/21/collaborations-between-artists-and-scientists.

Tayag Y., Wells B. Art and evolution: A work in progress. [(accessed on 1 August 2019)];Scientific American. 2014 May 6; Available online: https://blogs.scientificamerican.com/guest-blog/art-and-evolution-a-work-in-progress/

Schulkin J., Raglan G.B. The evolution of music and human social capability. Front. Neurosci. 2014;8:292. doi: 10.3389/fnins.2014.00292. PubMed DOI PMC

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Brey R. Flying ticks: Anciently evolved associations that constitute a risk of infectious disease spread. Parasit. Vectors. 2015;8:538. doi: 10.1186/s13071-015-1154-1. PubMed DOI PMC

Veis N. Four takes in the evolution of art. Nature. 2017;543:490. doi: 10.1038/543490a. DOI

Stevens C., O’Connor G. When artists get involved in research, science benefits. [(accessed on 1 August 2019)];The Conversation. 2017 Aug 16; Available online: http://theconversation.com/when-artists-get-involved-in-research-science-benefits-82147.

de la Fuente J. Anaplasmosis: What we can learn from Lam’s surrealistic animalarium. Hektoen International Hektorama-Infectious Diseases-Summer. [(accessed on 1 August 2019)];2018 Available online: http://hekint.org/2018/08/23/anasplasmosis-what-we-can-learn-from-lams-surrealistic-animalarium/

Riego E., Silva A., de la Fuente J. The sound of the DNA language. Biol. Res. 1995;28:197–204. PubMed

Eldred S.M. Art–science collaborations: Change of perspective. Nature. 2016;537:125–126. doi: 10.1038/nj7618-125a. DOI

Shelton J. A visual artist compares the way scientists and artists see a world of discovery. [(accessed on 1 August 2019)];YaleNews. 2017 Apr 3; Available online: https://news.yale.edu/2017/04/03/visual-artist-compares-way-scientists-and-artists-see-world-discovery.

Maeda J. Artists and scientists: More alike than different. [(accessed on 1 August 2019)];Scientific American. 2013 Jul 11; Available online: https://blogs.scientificamerican.com/guest-blog/artists-and-scientists-more-alike-than-different/

Peña-Rangel M.T., Rodriguez I., Riesgo-Escovar J.R. A misexpression study examining dorsal thorax formation in Drosophila melanogaster. Genetics. 2002;160:1035–1050. PubMed PMC

Almazán C., Kocan K.M., Bergman D.K., Garcia-Garcia J.C., Blouin E.F., de la Fuente J. Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine. 2003;21:1492–1501. doi: 10.1016/S0264-410X(02)00683-7. PubMed DOI

DasGupta R., Kaykas A., Moon R.T., Perrimon N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science. 2005;308:826–833. doi: 10.1126/science.1109374. PubMed DOI

Goto A., Matsushita K., Gesellchen V., El Chamy L., Kuttenkeuler D., Takeuchi O., Hoffmann J.A., Akira S., Boutros M., Reichhart J.M. Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in Drosophila and mice. Nat. Immunol. 2008;9:97–104. doi: 10.1038/ni1543. PubMed DOI PMC

Macqueen D.J., Johnston I.A. Evolution of the multifaceted eukaryotic akirin gene family. BMC Evol. Biol. 2009;9:34. doi: 10.1186/1471-2148-9-34. PubMed DOI PMC

Artigas-Jerónimo S., Villar M., Cabezas-Cruz A., Valdés J.J., Estrada-Peña A., Alberdi P., de la Fuente J. Functional evolution of Subolesin/Akirin. Front. Physiol. 2018;9:1612. doi: 10.3389/fphys.2018.01612. PubMed DOI PMC

Polanowska J., Chen J.X., Soulé J., Omi S., Belougne J., Taffoni C., Pujol N., Selbach M., Zugasti O., Ewbank J.J. Evolutionary plasticity in the innate immune function of Akirin. PLoS Genet. 2018;14:e1007494. doi: 10.1371/journal.pgen.1007494. PubMed DOI PMC

Rual J.F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N., Berriz G.F., Gibbons F.D., Dreze M., Ayivi-Guedehoussou N., et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–1178. doi: 10.1038/nature04209. PubMed DOI

Abdelmohsen K., Srikantan S., Yang X., Lal A., Kim H.H., Kuwano Y., Galban S., Becker K.G., Kamara D., de Cabo R., et al. Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J. 2009;28:1271–1282. doi: 10.1038/emboj.2009.67. PubMed DOI PMC

Armour S.M., Bennett E.J., Braun C.R., Zhang X.Y., McMahon S.B., Gygi S.P., Harper J.W., Sinclair D.A. A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol. Cell. Biol. 2013;33:1487–1502. doi: 10.1128/MCB.00971-12. PubMed DOI PMC

Hein M.Y., Hubner N.C., Poser I., Cox J., Nagaraj N., Toyoda Y., Gak I.A., Weisswange I., Mansfeld J., Buchholz F., et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–723. doi: 10.1016/j.cell.2015.09.053. PubMed DOI

Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., Colby G., Gebreab F., Gygi M.P., Parzen H., et al. Harper, architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. doi: 10.1038/nature22366. PubMed DOI PMC

de la Fuente J., Maritz-Olivier C., Naranjo V., Ayoubi P., Nijhof A.M., Almazán C., Canales M., Pérez de la Lastra J.M., Galindo R.C., Blouin E.F., et al. Evidence of the role of tick subolesin in gene expression. BMC Genom. 2008;9:372. doi: 10.1186/1471-2164-9-372. PubMed DOI PMC

Nowak S.J., Baylies M.K. Akirin: A context-dependent link between transcription and chromatin remodeling. Bioarchitecture. 2012;2:209–213. doi: 10.4161/bioa.22907. PubMed DOI PMC

Goto A., Fukuyama H., Imler J.L., Hoffmann J.A. The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response. J. Biol. Chem. 2014;289:20470–20476. doi: 10.1074/jbc.C114.553719. PubMed DOI PMC

Bonnay F., Nguyen X.H., Cohen-Berros E., Troxler L., Batsche E., Camonis J., Takeuchi O., Reichhart J.M., Matt N. Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling. EMBO J. 2014;33:2349–2362. doi: 10.15252/embj.201488456. PubMed DOI PMC

Shaw D.K., Wang X., Brown L.J., Chávez A.S., Reif K.E., Smith A.A., Scott A.J., McClure E.E., Boradia V.M., Hammond H.L., et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat. Commun. 2017;8:14401. doi: 10.1038/ncomms14401. PubMed DOI PMC

de la Fuente J., Kopáček P., Lew-Tabor A., Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016;38:754–769. doi: 10.1111/pim.12339. PubMed DOI

Camnitzer L. New Art of Cuba. University of Texas Press; Austin, TX, USA: 1994.

Cordero R. Raúl Cordero. Turner; Madrid, Spain: 2010.

Formstecher E., Aresta S., Collura V., Hamburger A., Meil A., Trehin A., Reverdy C., Betin V., Maire S., Brun C., et al. Protein interaction mapping: A Drosophila case study. Genome Res. 2005;15:376–384. doi: 10.1101/gr.2659105. PubMed DOI PMC

Rain J.C., Selig L., De Reuse H., Battaglia V., Reverdy C., Simon S., Lenzen G., Petel F., Wojcik J., Schächter V., et al. The protein-protein interaction map of Helicobacter pylori. Nature. 2011;409:211–215. doi: 10.1038/35051615. PubMed DOI

Moreno-Cid J.A., Pérez de la Lastra J.M., Villar M., Jiménez M., Pinal R., Estrada-Peña A., Molina R., Lucientes J., Gortázar C., de la Fuente J. SUB/AKR Vaccine Study Group. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine. 2013;31:1187–1196. doi: 10.1016/j.vaccine.2012.12.073. PubMed DOI

Merino O., Antunes S., Mosqueda J., Moreno-Cid J.A., Pérez de la Lastra J.M., Rosario-Cruz R., Rodríguez S., Domingos A., de la Fuente J. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896. doi: 10.1016/j.vaccine.2013.09.037. PubMed DOI

Garcia-Garcia J., Valls-Comamala V., Guney E., Andreu D., Muñoz F.J., Fernandez-Fuentes N., Oliva B. iFrag: A protein-protein interface prediction server based on sequence fragments. J. Mol. Biol. 2017;429:382–389. doi: 10.1016/j.jmb.2016.11.034. PubMed DOI

Ayllón N., Villar M., Busby A.T., Kocan K.M., Blouin E.F., Bonzón-Kulichenko E., Galindo R.C., Mangold A.J., Alberdi P., Pérez de la Lastra J.M., et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 2013;81:2415–2425. doi: 10.1128/IAI.00194-13. PubMed DOI PMC

Prudencio C.R., Pérez de la Lastra J.M., Canales M., Villar M., de la Fuente J. Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine. 2010;28:5398–5406. doi: 10.1016/j.vaccine.2010.06.021. PubMed DOI

Ward J.J., Sodhi J.S., McGuffin L.J., Buxton B.F., Jones D.T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 2004;337:635–645. doi: 10.1016/j.jmb.2004.02.002. PubMed DOI

Kim D.E., Chivian D., Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–W531. doi: 10.1093/nar/gkh468. PubMed DOI PMC

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40. doi: 10.1186/1471-2105-9-40. PubMed DOI PMC

Wu S., Zhang Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res. 2007;35:3375–3382. doi: 10.1093/nar/gkm251. PubMed DOI PMC

Benkert P., Kunzli M., Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37:W510–W514. doi: 10.1093/nar/gkp322. PubMed DOI PMC

Wingelhofer B., Neubauer H.A., Valent P., Han X., Constantinescu S.N., Gunning P.T., Müller M., Moriggl R. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia. 2018;32:1713–1726. doi: 10.1038/s41375-018-0117-x. PubMed DOI PMC

van Essen D., Engist B., Natoli G., Saccani S. Two modes of transcriptional activation at native promoters by NF-kappaB p65. PLoS Biol. 2009;7:e73. doi: 10.1371/journal.pbio.1000073. PubMed DOI PMC

Tieri P., Termanini A., Bellavista E., Salvioli S., Capri M., Franceschi C. Charting the NF-κB pathway interactome map. PLoS ONE. 2012;7:e32678. doi: 10.1371/journal.pone.0032678. PubMed DOI PMC

Joly S., Rhea L., Volk P., Moreland J.G., Dunnwald M. Interferon regulatory factor 6 has a protective role in the host response to endotoxic shock. PLoS ONE. 2016;11:e0152385. doi: 10.1371/journal.pone.0152385. PubMed DOI PMC

Pranski E.L., Dalal N.V., Herskowitz J.H., Orr A.L., Roesch L.A., Fritz J.J., Heilman C., Lah J.J., Levey A.I., Betarbet R.S. Neuronal RING finger protein 11 (RNF11) regulates canonical NF-κB signaling. J. Neuroinflamm. 2012;9:67. doi: 10.1186/1742-2094-9-67. PubMed DOI PMC

Frasor J., El-Shennawy L., Stender J.D., Kastrati I. NFκB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol. Cell. Endocrinol. 2015;418 Pt 3:235–239. doi: 10.1016/j.mce.2014.09.013. PubMed DOI PMC

Du Q., Geller D.A. Cross-regulation between Wnt and NF-κB signaling pathways. For Immunopathol. Dis. Therap. 2010;1:155–181. doi: 10.1615/ForumImmunDisTher.v1.i3.10. PubMed DOI PMC

Hoffmann A., Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol. Rev. 2006;210:171–186. doi: 10.1111/j.0105-2896.2006.00375.x. PubMed DOI

de la Garza G., Schleiffarth J.R., Dunnwald M., Mankad A., Weirather J.L., Bonde G., Butcher S., Mansour T.A., Kousa Y.A., Fukazawa C.F., et al. Interferon regulatory factor 6 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. J. Investig. Dermatol. 2013;133:68–77. doi: 10.1038/jid.2012.269. PubMed DOI PMC

Kowalec K., Wright G.E.B., Drögemöller B.I., Aminkeng F., Bhavsar A.P., Kingwell E., Yoshida E.M., Traboulsee A., Marrie R.A., Kremenchutzky M., et al. Common variation near IRF6 is associated with IFN-β-induced liver injury in multiple sclerosis. Nat. Genet. 2018;50:1081–1085. doi: 10.1038/s41588-018-0168-y. PubMed DOI PMC

Lenardo M.J., Fan C.M., Maniatis T., Baltimore D. The involvement of NF-κB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell. 1989;57:287–294. doi: 10.1016/0092-8674(89)90966-5. PubMed DOI

MacDonald N.J., Kuhl D., Maguire D., Näf D., Gallant P., Goswamy A., Hug H., Büeler H., Chaturvedi M., de la Fuente J., et al. Different pathways mediate virus inducibility of the human IFN-alpha1 and IFN-beta genes. Cell. 1990;60:767–779. doi: 10.1016/0092-8674(90)90091-R. PubMed DOI

Hiscott J., Alper D., Cohen L., Leblanc J.F., Sportza L., Wong A., Xanthoudakis S. Induction of human interferon gene expression is associated with a nuclear factor that interacts with the NF-kappa B site of the human immunodeficiency virus enhancer. J. Virol. 1989;63:2557–2566. doi: 10.1128/JVI.63.6.2557-2566.1989. PubMed DOI PMC

Sharif O., Bolshakov V.N., Raines S., Newham P., Perkins N.D. Transcriptional profiling of the LPS induced NF-kB response in macrophages. BMC Immunol. 2007;8:1471–2172. doi: 10.1186/1471-2172-8-1. PubMed DOI PMC

Sheikh F., Dickensheets H., Gamero A.M., Vogel S.N., Donnelly R.P. An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. J. Leukoc. Biol. 2014;96:591–600. doi: 10.1189/jlb.2A0414-191R. PubMed DOI PMC

Ashdown H., Dumont Y., Ng M., Poole S., Boksa P., Luheshi G.N. The role of cytokines in mediating effects of prenatal infection on the fetus: Implications for schizophrenia. Mol. Psychiatry. 2006;11:47–55. doi: 10.1038/sj.mp.4001748. PubMed DOI

Sakai J., Cammarota E., Wright J.A., Cicuta P., Gottschalk R.A., Li N., Fraser I.D.C., Bryant C.E. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci Rep. 2017;7:1428. doi: 10.1038/s41598-017-01600-y. PubMed DOI PMC

Contreras M., de la Fuente J. Control of Ixodes ricinus and Dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine. 2016;34:3010–3013. doi: 10.1016/j.vaccine.2016.04.092. PubMed DOI

Ailenberg M., Rotstein O. An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques. 2009;47:747–754. doi: 10.2144/000113218. PubMed DOI

Temple M.D. An auditory display tool for DNA sequence analysis. BMC Bioinform. 2017;18:221. doi: 10.1186/s12859-017-1632-x. PubMed DOI PMC

Mannone M. Knots, music and DNA. J. Creat. Music Syst. 2018;2:32. doi: 10.5920/jcms.2018.02. DOI

de la Fuente J., Estrada-Peña A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines. 2019;7:75. doi: 10.3390/vaccines7030075. PubMed DOI PMC

de la Fuente J., Moreno-Cid J.A., Canales M., Villar M., Pérez de la Lastra J.M., Kocan K.M., Galindo R.C., Almazán C., Blouin E.F. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet. Parasitol. 2011;181:17–22. doi: 10.1016/j.vetpar.2011.04.018. PubMed DOI

de la Fuente J., Moreno-Cid J.A., Galindo R.C., Almazán C., Kocan K.M., Merino O., Pérez de la Lastra J.M., Estrada-Peña A., Blouin E.F. Subolesin/Akirin vaccines for the control of arthropod vectors and vector-borne pathogens. Transbound. Emerg. Dis. 2013;60(Suppl. 2):172–178. doi: 10.1111/tbed.12146. PubMed DOI

de la Fuente J., Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31:5923–5929. doi: 10.1016/j.vaccine.2013.10.049. PubMed DOI

Contreras M., Villar M., de la Fuente J. A vaccinomics approach to the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front. Physiol. 2019;10:977. doi: 10.3389/fphys.2019.00977. PubMed DOI PMC

Artigas-Jerónimo S., Estrada-Peña A., Cabezas-Cruz A., Alberdi P., Villar M., de la Fuente J. Modeling modulation of the tick regulome in response to Anaplasma phagocytophilum for the identification of new control targets. Front. Physiol. 2019;10:462. doi: 10.3389/fphys.2019.00462. PubMed DOI PMC

de la Fuente J., Villar M., Estrada-Peña A., Olivas J.A. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Rev. Vaccines. 2018;17:569–576. doi: 10.1080/14760584.2018.1493928. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modelling protein-protein interactions for the design of vaccine chimeric antigens with protective epitopes

. 2025 ; 20 (2) : e0318439. [epub] 20250210

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace