Tick-borne encephalitis virus capsid protein induces translational shutoff as revealed by its structural-biological analysis

. 2022 Nov ; 298 (11) : 102585. [epub] 20221009

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36223838
Odkazy

PubMed 36223838
PubMed Central PMC9664413
DOI 10.1016/j.jbc.2022.102585
PII: S0021-9258(22)01028-6
Knihovny.cz E-zdroje

Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.

Biology of Vector Borne Viruses Section Laboratory of Virology Rocky Mountain Laboratories NIAID NIH Hamilton Montana USA

Central European Institute of Technology Masaryk University Brno Czech Republic

Central European Institute of Technology Masaryk University Brno Czech Republic; National Centre for Biomolecular Research Faculty of Sciences Masaryk University Brno Czech Republic

Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Prague Czech Republic; Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic

Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Prague Czech Republic; Laboratory of NMR Spectroscopy University of Chemistry and Technology Prague Prague Czech Republic

Department of Biotechnology University of Chemistry and Technology Prague Prague Czech Republic

Faculty of Science the University of South Bohemia in České Budějovice České Budějovice Czech Republic

Faculty of Science the University of South Bohemia in České Budějovice České Budějovice Czech Republic; Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic

Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic

Laboratory of NMR Spectroscopy University of Chemistry and Technology Prague Prague Czech Republic

School of Dentistry and Medical Science Charles Sturt University New South Wales Australia

Zobrazit více v PubMed

Gould E.A., Solomon T. Pathogenic flaviviruses. Lancet (London, England) 2008;371:500–509. PubMed

Barrows N.J., Campos R.K., Liao K.C., Prasanth K.R., Soto-Acosta R., Yeh S.C., et al. Biochemistry and molecular biology of flaviviruses. Chem. Rev. 2018;118:4448–4482. PubMed PMC

Neufeldt C.J., Cortese M., Acosta E.G., Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 2018;16:125–142. PubMed PMC

Byk L.A., Gamarnik A.V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol. 2016;3:263–281. PubMed PMC

Pulkkinen L.I.A., Butcher S.J., Anastasina M. Tick-borne encephalitis virus: a structural view. Viruses. 2018;10:350. PubMed PMC

Ma L., Jones C.T., Groesch T.D., Kuhn R.J., Post C.B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. U. S. A. 2004;101:3414–3419. PubMed PMC

Sotcheff S., Routh A. Understanding flavivirus capsid protein functions: the tip of the iceberg. Pathogens (Basel, Switzerland) 2020;9:42. PubMed PMC

Samsa M.M., Mondotte J.A., Iglesias N.G., Assuncao-Miranda I., Barbosa-Lima G., Da Poian A.T., et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5 PubMed PMC

Coyaud E., Ranadheera C., Cheng D., Gonçalves J., Dyakov B.J.A., Laurent E.M.N., et al. Global interactomics uncovers extensive organellar targeting by Zika virus. Mol. Cell. Proteomics. 2018;17:2242–2255. PubMed PMC

Bulich R., Aaskov J.G. Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J. Gen. Virol. 1992;73:2999–3003. PubMed

Westaway E.G., Khromykh A.A., Kenney M.T., Mackenzie J.M., Jones M.K. Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology. 1997;234:31–41. PubMed

Colpitts T.M., Barthel S., Wang P., Fikrig E. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One. 2011;6:e24365. PubMed PMC

Mori Y., Okabayashi T., Yamashita T., Zhao Z., Wakita T., Yasui K., et al. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J. Virol. 2005;79:3448–3458. PubMed PMC

Slomnicki L.P., Chung D.H., Parker A., Hermann T., Boyd N.L., Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci. Rep. 2017;7 PubMed PMC

Balinsky C.A., Schmeisser H., Ganesan S., Singh K., Pierson T.C., Zoon K.C. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J. Virol. 2013;87:13094–13106. PubMed PMC

Tsuda Y., Mori Y., Abe T., Yamashita T., Okamoto T., Ichimura T., et al. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol. Immunol. 2006;50:225–234. PubMed

Yang M.R., Lee S.R., Oh W., Lee E.W., Yeh J.Y., Nah J.J., et al. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol. 2008;10:165–176. PubMed PMC

Netsawang J., Noisakran S., Puttikhunt C., Kasinrerk W., Wongwiwat W., Malasit P., et al. Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res. 2010;147:275–283. PubMed

Fontaine K.A., Leon K.E., Khalid M.M., Tomar S., Jimenez-Morales D., Dunlap M., et al. The cellular NMD pathway restricts Zika virus infection and is targeted by the viral capsid protein. mBio. 2018;9 PubMed PMC

Samuel G.H., Wiley M.R., Badawi A., Adelman Z.N., Myles K.M. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc. Natl. Acad. Sci. U. S. A. 2016;113:13863–13868. PubMed PMC

Shang Z., Song H., Shi Y., Qi J., Gao G.F. Crystal structure of the capsid protein from Zika virus. J. Mol. Biol. 2018;430:948–962. PubMed

Kaufman F., Dostálková A., Pekárek L., Thanh T.D., Kapisheva M., Hadravová R., et al. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett. 2020;594:1989–2004. PubMed

Selinger M., Tykalova H., Sterba J., Vechtova P., Vavruskova Z., Lieskovska J., et al. Tick-borne encephalitis virus inhibits rRNA synthesis and host protein production in human cells of neural origin. PLoS Negl. Trop. Dis. 2019;13 PubMed PMC

Shen Y., Delaglio F., Cornilescu G., Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR. 2009;44:213–223. PubMed PMC

Dokland T., Walsh M., Mackenzie J.M., Khromykh A.A., Ee K.-H., Wang S. West Nile virus core protein: tetramer structure and ribbon formation. Structure. 2004;12:1157–1163. PubMed PMC

Ihling C.H., Piersimoni L., Kipping M., Sinz A. Cross-linking/Mass spectrometry combined with ion mobility on a timsTOF Pro instrument for structural Proteomics. bioRxiv. 2021 doi: 10.1101/2021.03.26.437136. [preprint] PubMed DOI

Merkley E.D., Rysavy S., Kahraman A., Hafen R.P., Daggett V., Adkins J.N. Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances. Protein Sci. 2014;23:747–759. PubMed PMC

Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010;5:725–738. PubMed PMC

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat. Met. 2015;12:7–8. PubMed PMC

Yang J., Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucl. Acids Res. 2015;43:W174–W181. PubMed PMC

Kavan D., Man P. MSTools—web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58.

Van Zundert G., Rodrigues J., Trellet M., Schmitz C., Kastritis P., Karaca E., et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 2016;428:720–725. PubMed

Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. PubMed

Oliveira E.R., Mohana-Borges R., de Alencastro R.B., Horta B.A. The flavivirus capsid protein: structure, function and perspectives towards drug design. Virus Res. 2017;227:115–123. PubMed

Byrd C.M., Dai D., Grosenbach D.W., Berhanu A., Jones K.F., Cardwell K.B., et al. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother. 2013;57:15–25. PubMed PMC

Xia H., Xie X., Zou J., Noble C.G., Russell W.K., Holthauzen L.M.F., et al. A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc. Natl. Acad. Sci. U. S. A. 2020;117:17992–18001. PubMed PMC

Hodel M.R., Corbett A.H., Hodel A.E. Dissection of a nuclear localization signal. J. Biol. Chem. 2001;276:1317–1325. PubMed

Cingolani G., Petosa C., Weis K., Müller C.W. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature. 1999;399:221–229. PubMed

Kobe B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 1999;6:388–397. PubMed

Matsuura Y., Stewart M. Structural basis for the assembly of a nuclear export complex. Nature. 2004;432:872–877. PubMed

Bhuvanakantham R., Chong M.K., Ng M.L. Specific interaction of capsid protein and importin-alpha/beta influences West Nile virus production. Biochem. Biophys. Res. Commun. 2009;389:63–69. PubMed

Bhuvanakantham R., Cheong Y.K., Ng M.L. West Nile virus capsid protein interaction with importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation. Microbes Infect. 2010;12:615–625. PubMed

Li M., Johnson J.R., Truong B., Kim G., Weinbren N., Dittmar M., et al. Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection. Nat. Microbiol. 2019;4:985–995. PubMed PMC

Carvalho F.A., Carneiro F.A., Martins I.C., Assunção-Miranda I., Faustino A.F., Pereira R.M., et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J. Virol. 2012;86:2096–2108. PubMed PMC

Martins A.S., Carvalho F.A., Faustino A.F., Martins I.C., Santos N.C. West Nile virus capsid protein interacts with biologically relevant host lipid systems. Front. Cell Infect. Microbiol. 2019;9:8. PubMed PMC

Bhuvanakantham R., Ng M.L. West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec3 protein through the proteasome pathway. Cell Microbiol. 2013;15:1688–1706. PubMed

Yakub I., Lillibridge K.M., Moran A., Gonzalez O.Y., Belmont J., Gibbs R.A., et al. Single nucleotide polymorphisms in genes for 2'-5'-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J. Infect. Dis. 2005;192:1741–1748. PubMed

Szretter K.J., Daniels B.P., Cho H., Gainey M.D., Yokoyama W.M., Gale M., Jr., et al. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8 PubMed PMC

Kimura T., Katoh H., Kayama H., Saiga H., Okuyama M., Okamoto T., et al. Ifit1 inhibits Japanese encephalitis virus replication through binding to 5' capped 2'-O unmethylated RNA. J. Virol. 2013;87:9997–10003. PubMed PMC

Andersen J.B., Strandbygård D.J., Hartmann R., Justesen J. Interaction between the 2'-5' oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. Eur. J. Biochem. 2004;271:628–636. PubMed

John S.P., Sun J., Carlson R.J., Cao B., Bradfield C.J., Song J., et al. IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Rep. 2018;25:95–106.e106. PubMed PMC

Jacobsen P.F., Jenkyn D.J., Papadimitriou J.M. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J. Neuropathol. Exp. Neurol. 1985;44:472–485. PubMed

Giard D.J., Aaronson S.A., Todaro G.J., Arnstein P., Kersey J.H., Dosik H., et al. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973;51:1417–1423. PubMed

Pospisil L., Jandasek L., Pesek J. Isolation of new strains of tick-borne encephalitis virus, Brno region, summer 1953. Lek List. 1954;9:3–5. PubMed

Sirmarova J., Salat J., Palus M., Hönig V., Langhansova H., Holbrook M.R., et al. Kyasanur Forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells. Emerg. Microbes Infect. 2018;7:175. PubMed PMC

Donald C.L., Brennan B., Cumberworth S.L., Rezelj V.V., Clark J.J., Cordeiro M.T., et al. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from recife, Brazil. PLoS Negl. Trop. Dis. 2016;10 PubMed PMC

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols. 2016;11(12):2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9(7):676–682. PubMed PMC

Selinger M., Wilkie G.S., Tong L., Gu Q., Schnettler E., Grubhoffer L., et al. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection. J. Gen. Virol. 2017;98:2043–2060. PubMed PMC

Sterbova J., Kocova P., Pekarek L., Selinger M., Ondrus J., Grubhoffer L., et al. Click-on-Membrane for detection of metabolically labelled proteins and RNA. Chem. Listy. 2021;115:662–668.

Yan Y., Du Y., Wang G., Li K. Non-structural protein 1 of H3N2 influenza A virus induces nucleolar stress via interaction with nucleolin. Sci. Rep. 2017;7 PubMed PMC

Vranken W.F., Boucher W., Stevens T.J., Fogh R.H., Pajon A., Llinas M., et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Struct. Funct. Bioinform. 2005;59:687–696. PubMed

Schwieters C.D., Kuszewski J.J., Clore G.M. Using Xplor–NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 2006;48:47–62.

Schwieters C.D., Kuszewski J.J., Tjandra N., Clore G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 2003;160:65–73. PubMed

Schrödinger L., DeLano W. PyMOL; 2020. http://www.pymol.org/pymol Available at:

Berjanskii M., Liang Y., Zhou J., Tang P., Stothard P., Zhou Y., et al. PROSESS: a protein structure evaluation suite and server. Nucl. Acids Res. 2010;38:W633–W640. PubMed PMC

Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graphics. 1996;14:33–38. PubMed

Honorato R.V., Koukos P.I., Jiménez-García B., Tsaregorodtsev A., Verlato M., Giachetti A., et al. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 2021;8:729513. PubMed PMC

Teh T., Tiganis T., Kobe B. Crystallization of importin alpha, the nuclear-import receptor. Acta Crystallogr. Sect. D, Biol. Crystallogr. 1999;55:561–563. PubMed

Studier F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005;41:207–234. PubMed

Patterson E.I., Dombrovski A.K., Swarbrick C.M., Raidal S.R., Forwood J.K. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal. Biochem. Biophys. Res. Commun. 2013;438:680–685. PubMed

McPhillips T.M., McPhillips S.E., Chiu H.J., Cohen A.E., Deacon A.M., Ellis P.J., et al. Blu-ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 2002;9:401–406. PubMed

Battye T.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. Sect D, Biol. Crystallogr. 2011;67:271–281. PubMed PMC

Evans P. Scaling and assessment of data quality. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2006;62:72–82. PubMed

Evans P.R. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2011;67:282–292. PubMed PMC

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC

Smith K.M., Tsimbalyuk S., Edwards M.R., Cross E.M., Batra J., Soares da Costa T.P., et al. Structural basis for importin alpha 3 specificity of W proteins in Hendra and Nipah viruses. Nat. Commun. 2018;9:3703. PubMed PMC

Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2004;60:2126–2132. PubMed

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2010;66:486–501. PubMed PMC

Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., et al. Phenix: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2010;66:213–221. PubMed PMC

Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucl. Acids Res. 2019;47:W636–w641. PubMed PMC

Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 2014;42:W320–324. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...