Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
18039714
PubMed Central
PMC2241880
DOI
10.1093/nar/gkm1024
PII: gkm1024
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- messenger RNA analýza MeSH
- oocyty chemie metabolismus MeSH
- polymerázová řetězová reakce * MeSH
- stanovení celkové genové exprese metody MeSH
- tomografie metody MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
Real-time PCR tomography is a novel, quantitative method for measuring localized RNA expression profiles within single cells. We demonstrate its usefulness by dissecting an oocyte from Xenopus laevis into slices along its animal-vegetal axis, extracting its RNA and measuring the levels of 18 selected mRNAs by real-time RT-PCR. This identified two classes of mRNA, one preferentially located towards the animal, the other towards the vegetal pole. mRNAs within each group show comparable intracellular gradients, suggesting they are produced by similar mechanisms. The polarization is substantial, though not extreme, with around 5% of vegetal gene mRNA molecules detected at the animal pole, and around 50% of the molecules in the far most vegetal section. Most animal pole mRNAs were found in the second section from the animal pole and in the central section, which is where the nucleus is located. mRNA expression profiles did not change following in vitro fertilization and we conclude that the cortical rotation that follows fertilization has no detectable effect on intracellular mRNA gradients.
Zobrazit více v PubMed
Shav-Tal Y, Singer RH. RNA localization. J. Cell. Sci. 2005;118(Pt 18):4077–4081. PubMed PMC
Danilchik MV, Gerhart JC. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev. Biol. 1987;122:101–112. PubMed
Heasman J. Maternal determinants of embryonic cell fate. Semin. Cell Dev. Biol. 2006;17:93–98. PubMed
Gerhart JC, Vincent JP, Scharf SR, Black SD, Gimlich RL, Danilchik M. Localization and induction in early development of Xenopus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984;307:319–330. PubMed
MacArthur H, Bubunenko M, Houston DW, King ML. Xcat2 RNA is a translationally sequestered germ plasm component in Xenopus. Mech. Dev. 1999;84:75–88. PubMed
MacArthur H, Houston DW, Bubunenko M, Mosquera L, King ML. DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mech. Dev. 2000;95:291–295. PubMed
Chang P, Perez-Mongiovi D, Houliston E. Organisation of Xenopus oocyte and egg cortices. Microsc. Res. Tech. 1999;44:415–429. PubMed
Zhou Y, King ML. Sending RNAs into the future: RNA localization and germ cell fate. Iubmb Life. 2004;56:19–27. PubMed
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell. 2005;97:19–33. PubMed
Mowry KL, Cote CA. RNA sorting in Xenopus oocytes and embryos. FASEB J. 1999;13:435–445. PubMed
Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Mech. Dev. 2002;119(Suppl. 1):S143–S148. PubMed
Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development. 1989;107(Suppl):37–51. PubMed
Vincent JP, Gerhart JC. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 1987;123:526–539. PubMed
Heasman J, Kofron M, Wylie C. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 2000;222:124–134. PubMed
Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, Joseph E, Heasman J. Maternal beta-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development. 1996;122:2987–2996. PubMed
Bengtsson M, Stahlberg A, Rorsman P, Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 2005;15:1388–1392. PubMed PMC
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, et al. The real-time polymerase chain reaction. Mol. Aspects Med. 2006;27:95–125. PubMed
Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006;1:1559–1582. PubMed
Ståhlberg A, Kubista M, Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 2004;50:1678–1680. PubMed
Sindelka R, Ferjentsik Z, Jonak J. Developmental expression profiles of Xenopus laevis reference genes. Dev. Dyn. 2006;235:754–758. PubMed
RNA localization during early development of the axolotl
NormQ: RNASeq normalization based on RT-qPCR derived size factors
Direct cell lysis for single-cell gene expression profiling