Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23880666
PubMed Central
PMC3721081
DOI
10.1038/srep02278
PII: srep02278
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- blastomery cytologie metabolismus MeSH
- rozvržení tělního plánu genetika MeSH
- shluková analýza MeSH
- stanovení celkové genové exprese * MeSH
- vývojová regulace genové exprese * MeSH
- Xenopus laevis embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres. We find no asymmetry in mRNA levels that might be ascribed to the dorso-ventral specification or the left-right axis formation. We hypothesize that while the animal-vegetal asymmetry is a consequence of mRNA gradients, the dorso-ventral and left-right axes specifications are induced by asymmetric distribution of other biomolecules, probably proteins.
Zobrazit více v PubMed
Bengtsson M., Ståhlberg A., Rorsman P. & Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005). PubMed PMC
Guo G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010). PubMed
May A. et al. Multiplex RT-PCR expression analysis of developmentally important genes in individual mouse preimplantation embryos and blastomeres. Biol. Reprod. 80, 194–202 (2009). PubMed
Galan A. et al. Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS One 5, e13615 (2010). PubMed PMC
Virant-Klun I. et al. Expression of pluripotency and oocyte-related genes in single putative stem cells from human adult ovarian surface epithelium cultured in vitro in the presence of follicular fluid. BioMed Res. Int. 2013, 1–18 (2012). PubMed PMC
Danilchik M. V. & Gerhart J. C. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev. Biol. 122, 101–112 (1987). PubMed
King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed
Sindelka R., Jonak J., Hands N., Bustin S. A. & Kubista M. Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Res. 36, 387–392 (2008). PubMed PMC
Sindelka R., Sidova M., Svec D. & Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 51, 87–91 (2010). PubMed
Roth S. The origin of dorsoventral polarity in Drosophila. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 1317–1329 (2003). PubMed PMC
Aanstad P. & Whitaker M. Predictability of dorso-ventral asymmetry in the cleavage stage zebrafish embryo: an analysis using lithium sensitivity as a dorso-ventral marker. Mech. Dev. 88, 33–41 (1999). PubMed
Sive L. H., Grainger M. R. & Harland M. R. Early development of Xenopus laevis – A laboratory manual. Cold Spring Harbor Laboratory Press 2000, chapter 2, figure 2.1.
Vincent J. P. & Gerhart J. C. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 123, 526–539 (1987). PubMed
Denegre J. M. & Danilchik M. V. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos. Dev. Biol. 160, 157–164 (1993). PubMed
Miller J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999). PubMed PMC
Marikawa Y., Li Y. & Elinson R. P. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway. Dev. Biol. 191, 69–79 (1997). PubMed
Darras S., Maikawa Y., Elinson R. P. & Lemaire P. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124, 4275–4286 (1997). PubMed
Hyatt B. A., Lohr J. L. & Yost H. J. Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65 (1996). PubMed
King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed
Kofron M. et al. New roles for FoxH1 in patterning the early embryo. Development 131, 5065–5078 (2004). PubMed
Kofron M. et al. Wnt11/β-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development 134, 503–513 (2007). PubMed
Cuykendall T. N. & Houston D. W. Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex. Dev. Dyn. 239, 1838–1848 (2010). PubMed PMC
Cuykendall T. N. & Houston D. W. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136, 3057–3065 (2009). PubMed PMC
Bergkvist A. et al. Gene expression profiling – Clusters of possibilities. Methods 50, 323–335 (2010). PubMed
Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42, 222–241 (1975). PubMed
Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis: II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51, 118–137 (1976). PubMed
Kikkawa M., Takano K. & Shinagawa A. Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development 122, 3687–3696 (1996). PubMed
Weaver C. & Kimelman D. Move it or lose it: axis specification in Xenopus. Development 131, 3491–3499 (2004). PubMed
Medina A., Wendler S. R. & Steinbeisser H. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos. Int. J. Dev. Biol. 41, 741–745 (1997). PubMed
Kugler J. M. & Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15–28 (2009). PubMed
Steinhauer J. & Kalderon D. Microtubule polarity and axis formation in the Drosophila oocyte. Dev. Dyn. 235, 1455–1468 (2006). PubMed
Hainski A. M. & Moody S. A. Xenopus maternal mRNAs from dorsal animal blastomere induce a secondary axis in host embryo. Development 116, 347–355 (1992). PubMed
Tao Q. et al. Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871 (2005). PubMed
Schroeder K. E., Condic M. L., Eisenberg L. M. & Yost H. J. Spatially regulated translation in embryos: asymmetric expression of maternal wnt-11 along the dorso-ventral axis in Xenopus. Dev. Biol. 214, 288–297 (1999). PubMed
Ståhlberg A., Rusnakova V., Forootan A., Anderova M. & Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods 59, 80–88 (2013). PubMed
RNA localization during early development of the axolotl