Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry

. 2013 ; 3 () : 2278.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23880666

We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres. We find no asymmetry in mRNA levels that might be ascribed to the dorso-ventral specification or the left-right axis formation. We hypothesize that while the animal-vegetal asymmetry is a consequence of mRNA gradients, the dorso-ventral and left-right axes specifications are induced by asymmetric distribution of other biomolecules, probably proteins.

Zobrazit více v PubMed

Bengtsson M., Ståhlberg A., Rorsman P. & Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005). PubMed PMC

Guo G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010). PubMed

May A. et al. Multiplex RT-PCR expression analysis of developmentally important genes in individual mouse preimplantation embryos and blastomeres. Biol. Reprod. 80, 194–202 (2009). PubMed

Galan A. et al. Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS One 5, e13615 (2010). PubMed PMC

Virant-Klun I. et al. Expression of pluripotency and oocyte-related genes in single putative stem cells from human adult ovarian surface epithelium cultured in vitro in the presence of follicular fluid. BioMed Res. Int. 2013, 1–18 (2012). PubMed PMC

Danilchik M. V. & Gerhart J. C. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev. Biol. 122, 101–112 (1987). PubMed

King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed

Sindelka R., Jonak J., Hands N., Bustin S. A. & Kubista M. Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Res. 36, 387–392 (2008). PubMed PMC

Sindelka R., Sidova M., Svec D. & Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 51, 87–91 (2010). PubMed

Roth S. The origin of dorsoventral polarity in Drosophila. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 1317–1329 (2003). PubMed PMC

Aanstad P. & Whitaker M. Predictability of dorso-ventral asymmetry in the cleavage stage zebrafish embryo: an analysis using lithium sensitivity as a dorso-ventral marker. Mech. Dev. 88, 33–41 (1999). PubMed

Sive L. H., Grainger M. R. & Harland M. R. Early development of Xenopus laevis – A laboratory manual. Cold Spring Harbor Laboratory Press 2000, chapter 2, figure 2.1.

Vincent J. P. & Gerhart J. C. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 123, 526–539 (1987). PubMed

Denegre J. M. & Danilchik M. V. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos. Dev. Biol. 160, 157–164 (1993). PubMed

Miller J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999). PubMed PMC

Marikawa Y., Li Y. & Elinson R. P. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway. Dev. Biol. 191, 69–79 (1997). PubMed

Darras S., Maikawa Y., Elinson R. P. & Lemaire P. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124, 4275–4286 (1997). PubMed

Hyatt B. A., Lohr J. L. & Yost H. J. Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65 (1996). PubMed

King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed

Kofron M. et al. New roles for FoxH1 in patterning the early embryo. Development 131, 5065–5078 (2004). PubMed

Kofron M. et al. Wnt11/β-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development 134, 503–513 (2007). PubMed

Cuykendall T. N. & Houston D. W. Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex. Dev. Dyn. 239, 1838–1848 (2010). PubMed PMC

Cuykendall T. N. & Houston D. W. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136, 3057–3065 (2009). PubMed PMC

Bergkvist A. et al. Gene expression profiling – Clusters of possibilities. Methods 50, 323–335 (2010). PubMed

Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42, 222–241 (1975). PubMed

Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis: II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51, 118–137 (1976). PubMed

Kikkawa M., Takano K. & Shinagawa A. Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development 122, 3687–3696 (1996). PubMed

Weaver C. & Kimelman D. Move it or lose it: axis specification in Xenopus. Development 131, 3491–3499 (2004). PubMed

Medina A., Wendler S. R. & Steinbeisser H. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos. Int. J. Dev. Biol. 41, 741–745 (1997). PubMed

Kugler J. M. & Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15–28 (2009). PubMed

Steinhauer J. & Kalderon D. Microtubule polarity and axis formation in the Drosophila oocyte. Dev. Dyn. 235, 1455–1468 (2006). PubMed

Hainski A. M. & Moody S. A. Xenopus maternal mRNAs from dorsal animal blastomere induce a secondary axis in host embryo. Development 116, 347–355 (1992). PubMed

Tao Q. et al. Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871 (2005). PubMed

Schroeder K. E., Condic M. L., Eisenberg L. M. & Yost H. J. Spatially regulated translation in embryos: asymmetric expression of maternal wnt-11 along the dorso-ventral axis in Xenopus. Dev. Biol. 214, 288–297 (1999). PubMed

Ståhlberg A., Rusnakova V., Forootan A., Anderova M. & Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods 59, 80–88 (2013). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace