Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26059897
PubMed Central
PMC4461913
DOI
10.1038/srep11157
PII: srep11157
Knihovny.cz E-zdroje
- MeSH
- buněčné dělení genetika MeSH
- mikro RNA genetika MeSH
- oocyty metabolismus MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs. Our results suggest that miRNAs in addition to proteins and mRNAs may have asymmetric distribution within the oocyte and may contribute to asymmetric cell division as cell fate determinants.
Zobrazit více v PubMed
Houston D. W. Regulation of cell polarity and RNA localization in vertebrate oocyte. Int Rev Cell Mol Biol. 306, 127–185 (2013). PubMed
Ephrussi A. & Lehmann R. Induction of germ cell formation by oskar. Nature 358, 387–392 (1992). PubMed
Hashimoto Y. et al. Localized maternal factors are required for zebrafish germ cell formation. Dev. Biol. 268, 152–161 (2004). PubMed
Howley C. & Ho R. K. mRNA localization patterns in zebrafish oocytes. Mech. Dev. 92, 305–309 (2000). PubMed
Kloc M. & Etkin L. D. RNA localization mechanisms in oocytes. J Cell Sci. 118, 269–282 (2005). PubMed
King M. L., Zhou Y. & Bubunenko M. Polarizing genetic information in the egg: RNA localization in the frog oocyte. Bioessays 21, 546–557 (1999). PubMed
Pandur P. D., Sullivan S. A. & Moody S. A. Multiple maternal influences on dorsal-ventral fate of Xenopus animal blastomeres. Dev Dyn. 225, 581–587 (2002). PubMed
King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell. 97, 19–33 (2005). PubMed
Mowry K. L. & Cote C. A. RNA sorting in Xenopus oocytes and embryos. FASEB J. 13, 435–445 (1999). PubMed
Cuykendall T. N. & Houston D. W. Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex RNA. Dev Dyn. 239, 1838–1848 (2010). PubMed PMC
Kloc M. & Etkin L. D. Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121, 287–297 (1995). PubMed
Snedden D. D., Bertke M. M., Vernon D. & Huber P. W. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination. RNA 19, 889–895 (2013). PubMed PMC
Zhou Y. & King M. L. Sending RNAs into the future: RNA localization and germ cell fate. IUBMB Life 56, 19–27 (2004). PubMed
Yisraeli J. K., Sokol S. & Melton D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development 108, 289–298 (1990). PubMed
Deshler J. O., Highett M. I. & Schnapp B. J. Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science 276, 1128–1131 (1997). PubMed
Gautreau D., Cote C. A. & Mowry K. L. Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development 124, 5013–5020 (1997). PubMed
Lewis R. A. et al. Conserved and clustered RNA recognition sequences are a critical feature of signals directing RNA localization in Xenopus oocytes. Mech Dev. 121, 101–109 (2004). PubMed
Bubunenko M., Kress T. L., Vempati U. D., Mowry K. L. & King M. L. A consensus RNA signal that directs germ layer determinants to the vegetal cortex of Xenopus oocytes. Dev Biol. 248, 82–92 (2002). PubMed
White J. A. & Heasman J. Maternal control of pattern formation in Xenopus laevis. J Exp Zool B Mol Dev Evol. 310, 73–84 (2008). PubMed
Kloc M., Bilinski S. & Dougherty M. T. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res. 313, 1639–1651 (2007). PubMed PMC
Kloc M. Teachings from the egg: new and unexpected functions of RNAs. Mol Reprod Dev. 76, 922–932 (2009). PubMed
Kloc M., Foreman V. & Reddy S. A. Binary function of mRNA. Biochimie 93, 1955–1961 (2011). PubMed
Jenny A. et al. A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133, 2827–2833 (2006). PubMed
Kloc M. et al. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132, 3445–3457 (2005). PubMed
Kloc M. et al. RNA localization and germ cell determination in Xenopus. Int Rev Cytol. 203, 63–91 (2001). PubMed
Sindelka R., Sidova M., Svec D. & Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 51, 87–91 (2010). PubMed
Flachsova M., Sindelka R. & Kubista M. Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry. Sci Rep 3, 2278 (2013). PubMed PMC
Wylie C. et al. Maternal beta-catenin establishes a 'dorsal signal' in early Xenopus embryos. Development 122, 2987–2996 (1996). PubMed
Mercer T. R. et al. Expression of distinct RNAs from 3' untranslated regions. Nucleic Acids Res. 39, 2393–2403 (2011). PubMed PMC
Watanabe T. et al. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett. 579, 318–324 (2005). PubMed
Ambady S., Wu Z. & Dominko T. Identification of novel miRNAs in Xenopus laevis matephase II arrested eggs. Genesis 50, 286–299 (2012). PubMed PMC
Sindelka R., Jonak J., Hands R., Bustin S. A. & Kubista M. Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Res. 36, 387–392 (2008). PubMed PMC
Gurdon J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morph. 20, 401–414 (1968). PubMed
Jullien J., Pasque V., Halley-Stott R. P., Miyamoto K. & Gurdon J. B. Mechanism of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol. 12, 453–459 (2011). PubMed PMC
Hibio N., Hino K., Shimizu E., Nagata Y. & Ui-Tei K. Stability of miRNA 5´terminal and seed regions in correlated with experimentally observed miRNA-mediated silencing efficacy. Sci Rep. 2, 996 (2012). PubMed PMC
Benes V. et al. Identification of cytokines-induced modulation of microRNAs expression and secretion as measured by a novel microRNA specific qPCR assay. Accepted in Sci Rep. (2015). PubMed PMC
Ibberson D., Benes V., Muckenthaler M. U. & Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol. 9, 102 (2009). PubMed PMC
Castoldi M. et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest. 121, 1386–1396 (2011). PubMed PMC