NormQ: RNASeq normalization based on RT-qPCR derived size factors
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32514328
PubMed Central
PMC7264052
DOI
10.1016/j.csbj.2020.05.010
PII: S2001-0370(20)30273-7
Knihovny.cz E-zdroje
- Klíčová slova
- DESeq, Median-of-ratios, Normalization, RNASeq, TOMOSeq, Transcriptomics,
- Publikační typ
- časopisecké články MeSH
The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that the majority of transcripts show no differential expression between conditions. This assumption may not always be correct, especially when one condition results in overexpression. We present a new method (NormQ) to normalize the RNASeq library size, using the relative proportion observed from RT-qPCR of selected marker genes. The method was compared against the popular median-of-ratios method, using simulated and real-datasets. NormQ produced more matches to differentially expressed genes in the simulated dataset and more distribution profile matches for both simulated and real datasets.
Zobrazit více v PubMed
Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC
Evans C, Hardin J, Stoebel D. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions 2016:1–32. https://doi.org/10.1093/bib/bbx008. PubMed PMC
Bullard J.H., Purdom E., Hansen K.D., Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. UC Berkeley Div Biostat Pap Ser. 2009;11:94. doi: 10.1186/1471-2105-11-94. PubMed DOI PMC
Dillies M.A., Rau A., Aubert J., Hennequet-Antier C., Jeanmougin M., Servant N. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671–683. doi: 10.1093/bib/bbs046. PubMed DOI
Jiang L., Schlesinger F., Davis C.A., Zhang Y., Li R., Salit M. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543–1551. doi: 10.1101/gr.121095.111. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Lovén J., Orlando D.A., Sigova A.A., Lin C.Y., Rahl P.B., Burge C.B. Revisiting global gene expression analysis Jakob. Cell. 2012;151:476–482. doi: 10.1016/j.cell.2012.10.012.Revisiting. PubMed DOI PMC
Lun A.T.L., Calero-Nieto F.J., Haim-Vilmovsky L., Göttgens B., Marioni J.C. Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data. Genome Res. 2017;27:1795–1806. doi: 10.1101/gr.222877.117. PubMed DOI PMC
Risso D., Ngai J., Speed T.P., Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotech. 2014;32:896–902. doi: 10.1038/nbt.2931. PubMed DOI PMC
Xu Q., Zhang X. The influence of the global gene expression shift on downstream analyses. PLoS ONE. 2016;11:1–13. doi: 10.1371/journal.pone.0153903. PubMed DOI PMC
Chen K, Hu Z, Xia Z, Zhao D, Li W. The overlooked fact: fundamental need of spike-in controls for. Mol Cell Biol May 2017;1:662–7. https://doi.org/10.1128/MCB.00970-14.Address. PubMed PMC
Sindelka R., Abaffy P., Qu Y., Tomankova S., Sidova M., Naraine R. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Sci Rep. 2018;8:1–16. doi: 10.1038/s41598-018-26592-1. PubMed DOI PMC
Junker J.P., Noël E.S., Guryev V., Peterson K.A., Shah G., Huisken J. Genome-wide RNA tomography in the Zebrafish embryo. Cell. 2014;159:662–675. doi: 10.1016/j.cell.2014.09.038. PubMed DOI
Sindelka R., Sidova M., Svec D., Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods. 2010;51:87–91. doi: 10.1016/j.ymeth.2009.12.011. PubMed DOI
Claussen M., Lingner T., Pommerenke C., Opitz L., Salinas G., Pieler T. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species. Mol Biol Cell. 2015;26:3777–3787. doi: 10.1091/mbc.E15-02-0115. PubMed DOI PMC
Sindelka R., Jonák J., Hands R., Bustin S.A., Kubista M. Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Res. 2008;36:387–392. doi: 10.1093/nar/gkm1024. PubMed DOI PMC
Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010 doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Chandramohan R, Po-Yen Wu, Phan JH, Wang MD. Benchmarking RNA-Seq quantification tools. 2013 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 118, IEEE; 2013, p. 647–50. https://doi.org/10.1109/EMBC.2013.6609583. PubMed PMC
Everaert C., Luypaert M., Maag J.L.V., Cheng Q.X., DInger ME, Hellemans J, Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep. 2017;7:1–11. doi: 10.1038/s41598-017-01617-3. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Kopylova E., Noé L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Anders S., Pyl P.T., Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Gilbert DG. Gene-omes built from mRNA-seq not genome DNA. 7th Annu Arthropod Genomics Symp 2013:47405. https://doi.org/10.7490/f1000research.1112594.1.
Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Karimi K., Fortriede J.D., Lotay V.S., Burns K.A., Wang D.Z., Fisher M.E. Xenbase: A genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res. 2018;46:D861–D868. doi: 10.1093/nar/gkx936. PubMed DOI PMC
Frazee A.C., Jaffe A.E., Langmead B., Leek J.T. Polyester: Simulating RNA-seq datasets with differential transcript expression. Bioinformatics. 2015;31:2778–2784. doi: 10.1093/bioinformatics/btv272. PubMed DOI PMC
Moulos P., Hatzis P. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res. 2015;43:1–12. doi: 10.1093/nar/gku1273. PubMed DOI PMC
Pantano L, Hutchinson J, Barrera V, Piper M, Khetani R, Daily K, et al. DEGreport: Report of DEG analysis 2017. https://doi.org/10.18129/B9.bioc.DEGreport.
Coulouris Y., Zaretskaya I., Cutcutache I., Rozen S., Madden T. Primer-BLAST: A tool to design target-specific primers for polymerse chain reaction. BMC Bioinf. 2012;18(13):134. PubMed PMC
Comparison of RNA localization during oogenesis within Acipenser ruthenus and Xenopus laevis