β-Lactoglobulin affects the oxidative status and viability of equine endometrial progenitor cells via lncRNA-mRNA-miRNA regulatory associations
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36860157
PubMed Central
PMC10064025
DOI
10.1111/jcmm.17694
Knihovny.cz E-zdroje
- Klíčová slova
- endometrium, non-coding RNA, progenitor cells, β-lactoglobulin,
- MeSH
- antioxidancia MeSH
- kmenové buňky metabolismus MeSH
- koně genetika MeSH
- laktoglobuliny MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- RNA dlouhá nekódující * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- laktoglobuliny MeSH
- messenger RNA MeSH
- mikro RNA * MeSH
- RNA dlouhá nekódující * MeSH
The β-lactoglobulin (β-LG) was previously characterized as a mild antioxidant modulating cell viability. However, its biological action regarding endometrial stromal cell cytophysiology and function has never been considered. In this study, we investigated the influence of β-LG on the cellular status of equine endometrial progenitor cells under oxidative stress. The study showed that β-LG decreased the intracellular accumulation of reactive oxygen species, simultaneously ameliorating cell viability and exerting an anti-apoptotic effect. However, at the transcriptional level, the reduced mRNA expression of pro-apoptotic factors (i.e. BAX and BAD) was accompanied by decreased expression of mRNA for anti-apoptotic BCL-2 and genes coding antioxidant enzymes (CAT, SOD-1, GPx). Still, we have also noted the positive effect of β-LG on the expression profile of transcripts involved in endometrial viability and receptivity, including ITGB1, ENPP3, TUNAR and miR-19b-3p. Finally, the expression of master factors of endometrial decidualization, namely prolactin and IGFBP1, was increased in response to β-LG, while non-coding RNAs (ncRNAs), that is lncRNA MALAT1 and miR-200b-3p, were upregulated. Our findings indicate a novel potential role of β-LG as a molecule regulating endometrial tissue functionality, promoting viability and normalizing the oxidative status of endometrial progenitor cells. The possible mechanism of β-LG action includes the activation of ncRNAs essential for tissue regeneration, such as lncRNA MALAT-1/TUNAR and miR-19b-3p/miR-200b-3p.
Zobrazit více v PubMed
Sawyer L. β‐Lactoglobulin and glycodelin: two sides of the same coin? Front Physiol. 2021;12:678080. doi:10.3389/fphys.2021.678080 PubMed DOI PMC
Liu HC, Chen WL, Mao SJT. Antioxidant nature of bovine milk beta‐lactoglobulin. J Dairy Sci. 2007;90:547‐555. doi:10.3168/jds.S0022-0302(07)71538-2 PubMed DOI
Varlamova EG, Zaripov OG. Beta‐lactoglobulin‐nutrition allergen and nanotransporter of different nature ligands therapy with therapeutic action. Res Vet Sci. 2020;133:17‐25. doi:10.1016/j.rvsc.2020.08.014 PubMed DOI
Yang F, Zou L, Wu Y, et al. Structure and allergenicity assessments of bovine β‐lactoglobulin treated by sonication‐assisted irradiation. J Dairy Sci. 2020;103:4109‐4120. doi:10.3168/jds.2019-17070 PubMed DOI
Rabe R, Hempel U, Martocq L, Keppler JK, Aveyard J, Douglas TEL. Dairy‐inspired coatings for bone implants from whey protein isolate‐derived self‐assembled fibrils. Int J Mol Sci. 2020;21:5544. doi:10.3390/ijms21155544 PubMed DOI PMC
Gilbert J, Reynolds NP, Russell SM, et al. Chitosan‐coated amyloid fibrils increase adipogenesis of mesenchymal stem cells. Mater Sci Eng C. 2017;79:363‐371. doi:10.1016/j.msec.2017.05.050 PubMed DOI
Lee C‐L, Lam KKW, Vijayan M, et al. The pleiotropic effect of glycodelin‐a in early pregnancy. Am J Reprod Immunol. 2016;75:290‐297. doi:10.1111/aji.12471 PubMed DOI
Smieszek A, Marcinkowska K, Pielok A, et al. Obesity affects the proliferative potential of equine endometrial progenitor cells and modulates their molecular phenotype associated with mitochondrial metabolism. Cell. 2022;11:1437. doi:10.3390/cells11091437 PubMed DOI PMC
Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reprod Med Biol. 2018;17:220‐227. doi:10.1002/rmb2.12088 PubMed DOI PMC
Yu S‐L, Jeong D‐U, Kang Y, et al. Impairment of decidualization of endometrial stromal cells by Hsa‐MiR‐375 through NOX4 targeting. Reprod Sci. 2022;29:3212‐3221. doi:10.1007/s43032-022-00854-w PubMed DOI PMC
Yu H‐F, Duan C‐C, Yang Z‐Q, Wang Y‐S, Yue Z‐P, Guo B. HB‐EGF ameliorates oxidative stress‐mediated uterine decidualization damage. Oxid Med Cell Longev. 2019;2019:e6170936. doi:10.1155/2019/6170936 PubMed DOI PMC
Matsumoto H, Sakai K, Iwashita M. Insulin‐like growth factor binding protein‐1 induces decidualization of human endometrial stromal cells via alpha5beta1 integrin. Mol Hum Reprod. 2008;14:485‐489. doi:10.1093/molehr/gan038 PubMed DOI
Aljubran F, Nothnick WB. Long non‐coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol. 2021;525:111190. doi:10.1016/j.mce.2021.111190 PubMed DOI PMC
Chen Q, Xin A, Qu R, et al. Expression of ENPP3 in human cyclic endometrium: a novel molecule involved in embryo implantation. Reprod Fertil Dev. 2018;30:1277‐1285. doi:10.1071/RD17257 PubMed DOI
Wang Y, Hu S, Yao G, et al. A novel molecule in human cyclic endometrium: LncRNA TUNAR is involved in embryo implantation. Front Physiol. 2020;11:587448. doi:10.3389/fphys.2020.587448 PubMed DOI PMC
Shi L, Zhu L, Gu Q, Kong C, Liu X, Zhu Z. LncRNA MALAT1 promotes decidualization of endometrial stromal cells via sponging MiR‐498‐3p and targeting histone deacetylase 4. Cell Biol Int. 2022;46:1264‐1274. doi:10.1002/cbin.11814 PubMed DOI
Liang Z, Chen Y, Zhao Y, et al. MiR‐200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther. 2017;8:251. doi:10.1186/s13287-017-0706-z PubMed DOI PMC
Sikora M, Śmieszek A, Marycz K. Bone marrow stromal cells (BMSCs CD45‐/CD44+/CD73+/CD90+) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation. J Cell Mol Med. 2021;25:6634‐6651. doi:10.1111/jcmm.16667 PubMed DOI PMC
Smieszek A, Kornicka K, Szłapka‐Kosarzewska J, et al. Metformin increases proliferative activity and viability of multipotent stromal stem cells isolated from adipose tissue derived from horses with equine metabolic syndrome. Cell. 2019;8:E80. doi:10.3390/cells8020080 PubMed DOI PMC
Lin Y, Dong S, Ye X, et al. Synergistic regenerative therapy of thin endometrium by human placenta‐derived mesenchymal stem cells encapsulated within hyaluronic acid hydrogels. Stem Cell Res Ther. 2022;13:66. doi:10.1186/s13287-022-02717-2 PubMed DOI PMC
Guo Q, Chang Y, Li J, et al. Regenerative effects of locally or intra‐arterially administered BMSCs on the thin endometrium. Front Bioeng Biotechnol. 2022;10:735465. doi:10.3389/fbioe.2022.735465 PubMed DOI PMC
Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13:235‐251. doi:10.1007/s11154-012-9221-9 PubMed DOI
Amălinei C, Păvăleanu I, Grigoraş A, et al. The endometrial regeneration frontiers: from mechanisms to applications in regenerative medicine. Rom J Morphol Embryol. 2018;59:407‐425. PubMed
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28. doi:10.1186/1477-7827-3-28 PubMed DOI PMC
Shan H, Luo R, Guo X, et al. Abnormal endometrial receptivity and oxidative stress in polycystic ovary syndrome. Front Pharmacol. 2022;13:1‐8. doi:10.1186/1477-7827-3-28 PubMed DOI PMC
Mestre Citrinovitz AC, Langer L, Strowitzki T, Germeyer A. Resveratrol enhances decidualization of human endometrial stromal cells. Reproduction. 2020;159:453‐463. doi:10.1530/REP-19-0425 PubMed DOI
Jamali N, Mostafavi‐Pour Z, Zal F, Kasraeian M, Poordast T, Nejabat N. Antioxidant ameliorative effect of caffeic acid on the ectopic endometrial cells separated from patients with endometriosis. Taiwan J Obstet Gynecol. 2021;60:216‐220. doi:10.1016/j.tjog.2020.12.003 PubMed DOI
Hautala LC, Pang P‐C, Antonopoulos A, et al. Altered glycosylation of glycodelin in endometrial carcinoma. Lab Invest. 2020;100:1014‐1025. doi:10.1038/s41374-020-0411-x PubMed DOI PMC
Kim Y‐E, Kim JW, Cheon S, Nam MS, Kim KK. Alpha‐casein and beta‐lactoglobulin from cow milk exhibit antioxidant activity: a plausible link to antiaging effects. J Food Sci. 2019;84:3083‐3090. doi:10.1111/1750-3841.14812 PubMed DOI
Pepe G, Basilicata MG, Carrizzo A, et al. β‐Lactoglobulin heptapeptide reduces oxidative stress in intestinal epithelial cells and angiotensin II–induced vasoconstriction on mouse mesenteric arteries by induction of nuclear factor erythroid 2‐related factor 2 (Nrf2) translocation. Oxid Med Cell Longev. 2019;2019:1616239. doi:10.1155/2019/1616239 PubMed DOI PMC
Oh JY, Choi GE, Lee HJ, et al. 17β‐estradiol protects mesenchymal stem cells against high glucose‐induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling. Free Radic Biol Med. 2019;130:328‐342. doi:10.1016/j.freeradbiomed.2018.11.003 PubMed DOI
Jin W, Zhao Y, Hu Y, et al. Stromal cell‐derived factor‐1 enhances the therapeutic effects of human endometrial regenerative cells in a mouse sepsis model. Stem Cells Int. 2020;2020:4820543. doi:10.1155/2020/4820543 PubMed DOI PMC
Dai X, Yan X, Zeng J, et al. Elevating CXCR7 improves Angiogenic function of EPCs via Akt/GSK‐3β/Fyn‐mediated Nrf2 activation in diabetic limb ischemia. Circ Res. 2017;120:e7‐e23. doi:10.1161/CIRCRESAHA.117.310619 PubMed DOI PMC
Song M‐H, Shin E‐C, Hwang D‐Y, Jang I‐S. Effects of lutein or lutein in combination with vitamin C on MRNA expression and activity of antioxidant enzymes and status of the antioxidant system in SD rats. Lab Anim Res. 2015;31:117‐124. doi:10.5625/lar.2015.31.3.117 PubMed DOI PMC
Talebi H, Farahpour MR, Hamishehkar H. The effectiveness of rutin for prevention of surgical induced endometriosis development in a rat model. Sci rep. 2021;11:7180. doi:10.1038/s41598-021-86586-4 PubMed DOI PMC
Monti DM, Loreto D, Iacobucci I, et al. Protein‐based delivery systems for anticancer metallodrugs: structure and biological activity of the oxaliplatin/β‐lactoglobulin adduct. Pharmaceuticals. 2022;15:425. doi:10.3390/ph15040425 PubMed DOI PMC
Li HY, Li P, Yang HG, et al. Investigation and comparison of the anti‐tumor activities of lactoferrin, α‐lactalbumin, and β‐lactoglobulin in A549, HT29, HepG2, and MDA231‐LM2 tumor models. J Dairy Sci. 2019;102:9586‐9597. doi:10.3168/jds.2019-16429 PubMed DOI
Korekane H, Park JY, Matsumoto A, et al. Identification of ctonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N‐acetylglucosaminyltransferase GnT‐IX (GnT‐Vb). J Biol Chem. 2013;288:27912‐27926. doi:10.1074/jbc.M113.474304 PubMed DOI PMC
Daguia Zambe JC, Zhai Y, Zhou Z, et al. MiR‐19b‐3p induces cell proliferation and reduces heterochromatin‐mediated senescence through PLZF in goat male germline stem cells. J Cell Physiol. 2018;233:4652‐4665. doi:10.1002/jcp.26231 PubMed DOI
Xiaoling G, Shuaibin L, Kailu L. MicroRNA‐19b‐3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with LncRNA H19. BMC Med Genet. 2020;21:11. doi:10.1186/s12881-020-0948-y PubMed DOI PMC
Yao S, Wei W, Cao R, et al. Resveratrol alleviates zea‐induced decidualization disturbance in human endometrial stromal cells. Ecotoxicol Environ Saf. 2021;207:111511. doi:10.1016/j.ecoenv.2020.111511 PubMed DOI
Meléndez García R, Arredondo Zamarripa D, Arnold E, et al. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2‐dependent cell death. EBioMedicine. 2016;7:35‐49. doi:10.1016/j.ebiom.2016.03.048 PubMed DOI PMC
Thébault S. Potential mechanisms behind the antioxidant actions of prolactin in the retina. Exp Eye Res. 2017;160:56‐61. doi:10.1016/j.exer.2017.03.014 PubMed DOI
Ramos‐Martinez E, Ramos‐Martínez I, Molina‐Salinas G, Zepeda‐Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci. 2021;32:323‐340. doi:10.1515/revneuro-2020-0082 PubMed DOI
Ihnatovych I, Livak M, Reed J, de Lanerolle P, Strakova Z. Manipulating actin dynamics affects human in vitro decidualization. Biol Reprod. 2009;81:222‐230. doi:10.1095/biolreprod.108.074666 PubMed DOI PMC
Jimenez PT, Mainigi MA, Word RA, Kraus WL, Mendelson CR. MiR‐200 regulates endometrial development during early pregnancy. Mol Endocrinol. 2016;30:977‐987. doi:10.1210/me.2016-1050 PubMed DOI PMC
Feng Y, Tan B‐Z. LncRNA MALAT1 inhibits apoptosis of endometrial stromal cells through MiR‐126‐5p‐CREB1 axis by activating PI3K‐AKT pathway. Mol Cell Biochem. 2020;475:185‐194. doi:10.1007/s11010-020-03871-y PubMed DOI
Liu H, Zhang Z, Xiong W, et al. Long non‐coding RNA MALAT1 mediates hypoxia‐induced pro‐survival autophagy of endometrial stromal cells in endometriosis. J Cell Mol Med. 2019;23:439‐452. doi:10.1111/jcmm.13947 PubMed DOI PMC