Obesity Affects the Proliferative Potential of Equine Endometrial Progenitor Cells and Modulates Their Molecular Phenotype Associated with Mitochondrial Metabolism
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35563743
PubMed Central
PMC9100746
DOI
10.3390/cells11091437
PII: cells11091437
Knihovny.cz E-zdroje
- Klíčová slova
- cellular metabolism, endometrial progenitor cells, obesity, self-renewal potential,
- MeSH
- endometrium metabolismus MeSH
- endoteliální progenitorové buňky * metabolismus MeSH
- fenotyp MeSH
- kmenové buňky metabolismus MeSH
- koně MeSH
- obezita metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.
International Institute of Translational Medicine Jesionowa 11 St 55 124 Malin Poland
Laboratory of Gene Expression Institute of Biotechnology CAS Biocev 25250 Vestec Czech Republic
Zobrazit více v PubMed
Rhee J.S., Saben J.L., Mayer A.L., Schulte M.B., Asghar Z., Stephens C., Chi M.M.-Y., Moley K.H. Diet-Induced Obesity Impairs Endometrial Stromal Cell Decidualization: A Potential Role for Impaired Autophagy. Hum. Reprod. 2016;31:1315–1326. doi: 10.1093/humrep/dew048. PubMed DOI PMC
Das M., Sauceda C., Webster N.J.G. Mitochondrial Dysfunction in Obesity and Reproduction. Endocrinology. 2021;162:bqaa158. doi: 10.1210/endocr/bqaa158. PubMed DOI PMC
Robles M., Nouveau E., Gautier C., Mendoza L., Dubois C., Dahirel M., Lagofun B., Aubrière M.-C., Lejeune J.-P., Caudron I., et al. Maternal Obesity Increases Insulin Resistance, Low-Grade Inflammation and Osteochondrosis Lesions in Foals and Yearlings until 18 Months of Age. PLoS ONE. 2018;13:e0190309. doi: 10.1371/journal.pone.0190309. PubMed DOI PMC
Johnson P.J., Wiedmeyer C.E., Messer N.T., Ganjam V.K. Medical Implications of Obesity in Horses—Lessons for Human Obesity. J. Diabetes Sci. Technol. 2009;3:163–174. doi: 10.1177/193229680900300119. PubMed DOI PMC
Kosolofski H.R., Gow S.P., Robinson K.A. Prevalence of Obesity in the Equine Population of Saskatoon and Surrounding Area. Can. Vet. J. 2017;58:967–970. PubMed PMC
Sessions-Bresnahan D.R., Heuberger A.L., Carnevale E.M. Obesity in Mares Promotes Uterine Inflammation and Alters Embryo Lipid Fingerprints and Homeostasis. Biol. Reprod. 2018;99:761–772. doi: 10.1093/biolre/ioy107. PubMed DOI
Conley S.M., Hickson L.J., Kellogg T.A., McKenzie T., Heimbach J.K., Taner T., Tang H., Jordan K.L., Saadiq I.M., Woollard J.R., et al. Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Front. Cell Dev. Biol. 2020;8:197. doi: 10.3389/fcell.2020.00197. PubMed DOI PMC
Marycz K., Kornicka K., Marędziak M., Golonka P., Nicpoń J. Equine Metabolic Syndrome Impairs Adipose Stem Cells Osteogenic Differentiation by Predominance of Autophagy over Selective Mitophagy. J. Cell. Mol. Med. 2016;20:2384–2404. doi: 10.1111/jcmm.12932. PubMed DOI PMC
Marycz K., Weiss C., Śmieszek A., Kornicka K. Evaluation of Oxidative Stress and Mitophagy during Adipogenic Differentiation of Adipose-Derived Stem Cells Isolated from Equine Metabolic Syndrome (EMS) Horses. Stem Cells Int. 2018;2018:5340756. doi: 10.1155/2018/5340756. PubMed DOI PMC
Marycz K., Kornicka K., Basinska K., Czyrek A. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging. [(accessed on 19 February 2021)]. Available online: https://www.hindawi.com/journals/omcl/2016/4710326/ PubMed PMC
Smieszek A., Kornicka K., Szłapka-Kosarzewska J., Androvic P., Valihrach L., Langerova L., Rohlova E., Kubista M., Marycz K. Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome. Cells. 2019;8:80. doi: 10.3390/cells8020080. PubMed DOI PMC
Al Naem M., Bourebaba L., Kucharczyk K., Röcken M., Marycz K. Therapeutic Mesenchymal Stromal Stem Cells: Isolation, Characterization and Role in Equine Regenerative Medicine and Metabolic Disorders. Stem Cell Rev. Rep. 2020;16:301–322. doi: 10.1007/s12015-019-09932-0. PubMed DOI
Zahedi M., Parham A., Dehghani H., Kazemi Mehrjerdi H. Equine Bone Marrow-Derived Mesenchymal Stem Cells: Optimization of Cell Density in Primary Culture. Stem Cell Investig. 2018;5:31. doi: 10.21037/sci.2018.09.01. PubMed DOI PMC
Lara E., Rivera N., Cabezas J., Navarrete F., Saravia F., Rodríguez-Alvarez L., Castro F.O. Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering. 2018;5:75. doi: 10.3390/bioengineering5030075. PubMed DOI PMC
Rink B.E., Amilon K.R., Esteves C.L., French H.M., Watson E., Aurich C., Donadeu F.X. Isolation and Characterization of Equine Endometrial Mesenchymal Stromal Cells. Stem Cell Res. 2017;8:166. doi: 10.1186/s13287-017-0616-0. PubMed DOI PMC
Rink B.E., Beyer T., French H.M., Watson E., Aurich C., Donadeu F.X. The Fate of Autologous Endometrial Mesenchymal Stromal Cells After Application in the Healthy Equine Uterus. Stem Cells Dev. 2018;27:1046–1052. doi: 10.1089/scd.2018.0056. PubMed DOI PMC
Serrato López A.G., Montesinos Montesinos J.J., Anzaldúa Arce S.R., Serrato López A.G., Montesinos Montesinos J.J., Anzaldúa Arce S.R. The Endometrium as a Source of Mesenchymal Stem Cells in Domestic Animals and Possible Applications in Veterinary Medicine. Vet. México OA. 2017;4:41–58. doi: 10.21753/vmoa.4.3.441. DOI
Canisso I.F., Segabinazzi L.G.T.M., Fedorka C.E. Persistent Breeding-Induced Endometritis in Mares—A Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology. Int. J. Mol. Sci. 2020;21:1432. doi: 10.3390/ijms21041432. PubMed DOI PMC
Basinska K., Marycz K., Śieszek A., Nicpoń J. The Production and Distribution of IL-6 and TNF-a in Subcutaneous Adipose Tissue and Their Correlation with Serum Concentrations in Welsh Ponies with Equine Metabolic Syndrome. J. Vet. Sci. 2015;16:113–120. doi: 10.4142/jvs.2015.16.1.113. PubMed DOI PMC
Henneke D.R., Potter G.D., Kreider J.L., Yeates B.F. Relationship between Condition Score, Physical Measurements and Body Fat Percentage in Mares. Equine Vet. J. 1983;15:371–372. doi: 10.1111/j.2042-3306.1983.tb01826.x. PubMed DOI
Smieszek A., Tomaszewski K.A., Kornicka K., Marycz K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J. Clin. Med. 2018;7:482. doi: 10.3390/jcm7120482. PubMed DOI PMC
Marycz K., Pielok A., Kornicka-Garbowska K. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + —A Novel Dermal/Epidermal Stem Cell Population With a Potential Critical Role for Laminitis Treatment. Stem Cell Rev. Rep. 2021;17:1478–1485. doi: 10.1007/s12015-021-10187-x. PubMed DOI PMC
Śmieszek A., Stręk Z., Kornicka K., Grzesiak J., Weiss C., Marycz K. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (MOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels—An Ex Vivo Study. Int. J. Mol. Sci. 2017;18:872. doi: 10.3390/ijms18040872. PubMed DOI PMC
Smieszek A., Marcinkowska K., Pielok A., Sikora M., Valihrach L., Marycz K. The Role of MiR-21 in Osteoblasts-Osteoclasts Coupling In Vitro. Cells. 2020;9:479. doi: 10.3390/cells9020479. PubMed DOI PMC
Heuer G.G., Skorupa A.F., Prasad Alur R.K., Jiang K., Wolfe J.H. Accumulation of Abnormal Amounts of Glycosaminoglycans in Murine Mucopolysaccharidosis Type VII Neural Progenitor Cells Does Not Alter the Growth Rate or Efficiency of Differentiation into Neurons. Mol. Cell. Neurosci. 2001;17:167–178. doi: 10.1006/mcne.2000.0917. PubMed DOI
Doubling Time—Online Computing with 2 Points. [(accessed on 28 January 2021)]. Available online: https://www.doubling-time.com/compute.php.
Peng J.-Y., Lin C.-C., Chen Y.-J., Kao L.-S., Liu Y.-C., Chou C.-C., Huang Y.-H., Chang F.-R., Wu Y.-C., Tsai Y.-S., et al. Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics. PLoS Comput. Biol. 2011;7:e1002212. doi: 10.1371/journal.pcbi.1002212. PubMed DOI PMC
Sikora M., Marcinkowska K., Marycz K., Wiglusz R.J., Śmieszek A. The Potential Selective Cytotoxicity of Poly (l-Lactic Acid)-Based Scaffolds Functionalized with Nanohydroxyapatite and Europium(III) Ions toward Osteosarcoma Cells. Materials. 2019;12:3779. doi: 10.3390/ma12223779. PubMed DOI PMC
Marycz K., Smieszek A., Targonska S., Walsh S.A., Szustakiewicz K., Wiglusz R.J. Three Dimensional (3D) Printed Polylactic Acid with Nano-Hydroxyapatite Doped with Europium(III) Ions (NHAp/PLLA@Eu3+) Composite for Osteochondral Defect Regeneration and Theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110634. doi: 10.1016/j.msec.2020.110634. PubMed DOI
Targonska S., Sikora M., Marycz K., Smieszek A., Wiglusz R.J. Theranostic Applications of Nanostructured Silicate-Substituted Hydroxyapatite Codoped with Eu3+ and Bi3+ Ions-A Novel Strategy for Bone Regeneration. ACS Biomater. Sci. Eng. 2020;6:6148–6160. doi: 10.1021/acsbiomaterials.0c00824. PubMed DOI
Sikora M., Śmieszek A., Marycz K. Bone Marrow Stromal Cells (BMSCs CD45−/CD44+/CD73+/CD90+) Isolated from Osteoporotic Mice SAM/P6 as a Novel Model for Osteoporosis Investigation. J. Cell. Mol. Med. 2021;25:6634–6651. doi: 10.1111/jcmm.16667. PubMed DOI PMC
Figueira P.G.M., Abrão M.S., Krikun G., Taylor H. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2011;1221:10–17. doi: 10.1111/j.1749-6632.2011.05969.x. PubMed DOI PMC
Queckbörner S., Syk Lundberg E., Gemzell-Danielsson K., Davies L.C. Endometrial Stromal Cells Exhibit a Distinct Phenotypic and Immunomodulatory Profile. Stem Cell Res. Ther. 2020;11:15. doi: 10.1186/s13287-019-1496-2. PubMed DOI PMC
Wolff E.F., Mutlu L., Massasa E.E., Elsworth J.D., Eugene Redmond D., Taylor H.S. Endometrial Stem Cell Transplantation in MPTP- Exposed Primates: An Alternative Cell Source for Treatment of Parkinson’s Disease. J. Cell. Mol. Med. 2015;19:249–256. doi: 10.1111/jcmm.12433. PubMed DOI PMC
Schöniger S., Schoon H.-A. The Healthy and Diseased Equine Endometrium: A Review of Morphological Features and Molecular Analyses. Animals. 2020;10:625. doi: 10.3390/ani10040625. PubMed DOI PMC
Kornicka K., Houston J., Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy May Limit Their Potential Therapeutic Use. Stem Cell Rev. Rep. 2018;14:337–345. doi: 10.1007/s12015-018-9809-x. PubMed DOI PMC
Takahashi H., Sakata N., Yoshimatsu G., Hasegawa S., Kodama S. Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. J. Clin. Med. 2019;8:249. doi: 10.3390/jcm8020249. PubMed DOI PMC
Pérez L.M., Bernal A., de Lucas B., Martin N.S., Mastrangelo A., García A., Barbas C., Gálvez B.G. Altered Metabolic and Stemness Capacity of Adipose Tissue-Derived Stem Cells from Obese Mouse and Human. PLoS ONE. 2015;10:e0123397. doi: 10.1371/journal.pone.0123397. PubMed DOI PMC
Isakson P., Hammarstedt A., Gustafson B., Smith U. Impaired Preadipocyte Differentiation in Human Abdominal Obesity: Role of Wnt, Tumor Necrosis Factor-α, and Inflammation. Diabetes. 2009;58:1550–1557. doi: 10.2337/db08-1770. PubMed DOI PMC
Schmelzer E., McKeel D.T., Gerlach J.C. Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies. Biomed Res. Int. 2019;2019:6376271. doi: 10.1155/2019/6376271. PubMed DOI PMC
Anderson P., Carrillo-Gálvez A.B., García-Pérez A., Cobo M., Martín F. CD105 (Endoglin)-Negative Murine Mesenchymal Stromal Cells Define a New Multipotent Subpopulation with Distinct Differentiation and Immunomodulatory Capacities. PLoS ONE. 2013;8:e76979. doi: 10.1371/journal.pone.0076979. PubMed DOI PMC
Cleary M.A., Narcisi R., Focke K., van der Linden R., Brama P.A.J., van Osch G.J.V.M. Expression of CD105 on Expanded Mesenchymal Stem Cells Does Not Predict Their Chondrogenic Potential. Osteoarthr. Cartil. 2016;24:868–872. doi: 10.1016/j.joca.2015.11.018. PubMed DOI
Talele N.P., Fradette J., Davies J.E., Kapus A., Hinz B. Expression of α-Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells. Stem Cell Rep. 2015;4:1016–1030. doi: 10.1016/j.stemcr.2015.05.004. PubMed DOI PMC
Alessio N., Acar M.B., Demirsoy I.H., Squillaro T., Siniscalco D., Bernardo G.D., Peluso G., Özcan S., Galderisi U. Obesity Is Associated with Senescence of Mesenchymal Stromal Cells Derived from Bone Marrow, Subcutaneous and Visceral Fat of Young Mice. Aging. 2020;12:12609–12621. doi: 10.18632/aging.103606. PubMed DOI PMC
Murakami K., Bhandari H., Lucas E.S., Takeda S., Gargett C.E., Quenby S., Brosens J.J., Tan B.K. Deficiency in Clonogenic Endometrial Mesenchymal Stem Cells in Obese Women with Reproductive Failure—A Pilot Study. PLoS ONE. 2013;8:e82582. doi: 10.1371/journal.pone.0082582. PubMed DOI PMC
Alicka M., Kornicka-Garbowska K., Kucharczyk K., Kępska M., Röcken M., Marycz K. Age-Dependent Impairment of Adipose-Derived Stem Cells Isolated from Horses. Stem Cell Res. 2020;11:4. doi: 10.1186/s13287-019-1512-6. PubMed DOI PMC
Maumus M., Sengenès C., Decaunes P., Zakaroff-Girard A., Bourlier V., Lafontan M., Galitzky J., Bouloumié A. Evidence of in Situ Proliferation of Adult Adipose Tissue-Derived Progenitor Cells: Influence of Fat Mass Microenvironment and Growth. J. Clin. Endocrinol. Metab. 2008;93:4098–4106. doi: 10.1210/jc.2008-0044. PubMed DOI
Kaufman A., Choo E., Koh A., Dando R. Inflammation Arising from Obesity Reduces Taste Bud Abundance and Inhibits Renewal. PLoS Biol. 2018;16:e2001959. doi: 10.1371/journal.pbio.2001959. PubMed DOI PMC
Mertens H.J.M.M., Heineman M.J., Evers J.L.H. The Expression of Apoptosis-Related Proteins Bcl-2 and Ki67 in Endometrium of Ovulatory Menstrual Cycles. Gynecol. Obstet. Investig. 2002;53:224–230. doi: 10.1159/000064569. PubMed DOI
Yang J.-H., Wu M.-Y., Chen C.-D., Chen M.-J., Yang Y.-S., Ho H.-N. Altered Apoptosis and Proliferation in Endometrial Stromal Cells of Women with Adenomyosis. Hum. Reprod. 2007;22:945–952. doi: 10.1093/humrep/del493. PubMed DOI
Pattabiraman S., Azad G.K., Amen T., Brielle S., Park J.E., Sze S.K., Meshorer E., Kaganovich D. Vimentin Protects Differentiating Stem Cells from Stress. Sci. Rep. 2020;10:19525. doi: 10.1038/s41598-020-76076-4. PubMed DOI PMC
Nomiyama T., Perez-Tilve D., Ogawa D., Gizard F., Zhao Y., Heywood E.B., Jones K.L., Kawamori R., Cassis L.A., Tschöp M.H., et al. Osteopontin Mediates Obesity-Induced Adipose Tissue Macrophage Infiltration and Insulin Resistance in Mice. J. Clin. Investig. 2007;117:2877–2888. doi: 10.1172/JCI31986. PubMed DOI PMC
Qi Q.-R., Xie Q.-Z., Liu X.-L., Zhou Y. Osteopontin Is Expressed in the Mouse Uterus during Early Pregnancy and Promotes Mouse Blastocyst Attachment and Invasion In Vitro. PLoS ONE. 2014;9:e104955. doi: 10.1371/journal.pone.0104955. PubMed DOI PMC
Dalal S., Zha Q., Singh M., Singh K. Osteopontin-Stimulated Apoptosis in Cardiac Myocytes Involves Oxidative Stress and Mitochondrial Death Pathway: Role of a pro-Apoptotic Protein BIK. Mol. Cell. Biochem. 2016;418:1–11. doi: 10.1007/s11010-016-2725-y. PubMed DOI PMC
Miyamoto T., Uosaki H., Mizunoe Y., Han S.-I., Goto S., Yamanaka D., Masuda M., Yoneyama Y., Nakamura H., Hattori N., et al. Rapid Manipulation of Mitochondrial Morphology in a Living Cell with ICMM. Cell Rep. Methods. 2021;1:100052. doi: 10.1016/j.crmeth.2021.100052. PubMed DOI PMC
Fu D., Mitra K., Sengupta P., Jarnik M., Lippincott-Schwartz J., Arias I.M. Coordinated Elevation of Mitochondrial Oxidative Phosphorylation and Autophagy Help Drive Hepatocyte Polarization. Proc. Natl. Acad. Sci. USA. 2013;110:7288–7293. doi: 10.1073/pnas.1304285110. PubMed DOI PMC
Chandel N.S. Mitochondria as Signaling Organelles. BMC Biol. 2014;12:34. doi: 10.1186/1741-7007-12-34. PubMed DOI PMC
Nasonovs A., Garcia-Diaz M., Bogenhagen D.F. A549 Cells Contain Enlarged Mitochondria with Independently Functional Clustered MtDNA Nucleoids. PLoS ONE. 2021;16:e0249047. doi: 10.1371/journal.pone.0249047. PubMed DOI PMC
Glancy B., Kim Y., Katti P., Willingham T.B. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front. Physiol. 2020;11:541040. doi: 10.3389/fphys.2020.541040. PubMed DOI PMC
Miyazono Y., Hirashima S., Ishihara N., Kusukawa J., Nakamura K., Ohta K. Uncoupled Mitochondria Quickly Shorten along Their Long Axis to Form Indented Spheroids, Instead of Rings, in a Fission-Independent Manner. Sci. Rep. 2018;8:350. doi: 10.1038/s41598-017-18582-6. PubMed DOI PMC
Wang Y., Nartiss Y., Steipe B., McQuibban G.A., Kim P.K. ROS-Induced Mitochondrial Depolarization Initiates PARK2/PARKIN-Dependent Mitochondrial Degradation by Autophagy. Autophagy. 2012;8:1462–1476. doi: 10.4161/auto.21211. PubMed DOI
Breitenbach M., Rinnerthaler M., Hartl J., Stincone A., Vowinckel J., Breitenbach-Koller H., Ralser M. Mitochondria in Ageing: There Is Metabolism beyond the ROS. FEMS Yeast Res. 2014;14:198–212. doi: 10.1111/1567-1364.12134. PubMed DOI
Heo J.-W., No M.-H., Park D.-H., Kang J.-H., Seo D.Y., Han J., Neufer P.D., Kwak H.-B. Effects of Exercise on Obesity-Induced Mitochondrial Dysfunction in Skeletal Muscle. Korean J. Physiol. Pharm. 2017;21:567–577. doi: 10.4196/kjpp.2017.21.6.567. PubMed DOI PMC
Yang X., Wang J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front. Oncol. 2019;9:744. doi: 10.3389/fonc.2019.00744. PubMed DOI PMC
Sundin M., D’Arcy P., Johansson C.C., Barrett A.J., Lönnies H., Sundberg B., Nava S., Kiessling R., Mougiakakos D., Le Blanc K. Multipotent Mesenchymal Stromal Cells Express FoxP3: A Marker for the Immunosuppressive Capacity? J. Immunother. 2011;34:336–342. doi: 10.1097/CJI.0b013e318217007c. PubMed DOI PMC
Berbic M., Hey-Cunningham A.J., Ng C., Tokushige N., Ganewatta S., Markham R., Russell P., Fraser I.S. The Role of Foxp3+ Regulatory T-Cells in Endometriosis: A Potential Controlling Mechanism for a Complex, Chronic Immunological Condition. Hum. Reprod. 2010;25:900–907. doi: 10.1093/humrep/deq020. PubMed DOI
Teles A., Schumacher A., Kühnle M.-C., Linzke N., Thuere C., Reichardt P., Tadokoro C.E., Hämmerling G.J., Zenclussen A.C. Control of Uterine Microenvironment by Foxp3+ Cells Facilitates Embryo Implantation. Front. Immunol. 2013;4:158. doi: 10.3389/fimmu.2013.00158. PubMed DOI PMC
Liu T., Zhang L., Joo D., Sun S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W. Modulation of NF-KappaB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. EMBO J. 2004;23:2369–2380. doi: 10.1038/sj.emboj.7600244. PubMed DOI PMC
Shirane A., Wada-Hiraike O., Tanikawa M., Seiki T., Hiraike H., Miyamoto Y., Sone K., Hirano M., Oishi H., Oda K., et al. Regulation of SIRT1 Determines Initial Step of Endometrial Receptivity by Controlling E-Cadherin Expression. Biochem. Biophys. Res. Commun. 2012;424:604–610. doi: 10.1016/j.bbrc.2012.06.160. PubMed DOI
Atkins H.M., Bharadwaj M.S., O’Brien Cox A., Furdui C.M., Appt S.E., Caudell D.L. Endometrium and Endometriosis Tissue Mitochondrial Energy Metabolism in a Nonhuman Primate Model. Reprod. Biol. Endocrinol. 2019;17:70. doi: 10.1186/s12958-019-0513-8. PubMed DOI PMC
Gautier C.A., Kitada T., Shen J. Loss of PINK1 Causes Mitochondrial Functional Defects and Increased Sensitivity to Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2008;105:11364–11369. doi: 10.1073/pnas.0802076105. PubMed DOI PMC
Holzer I., Machado Weber A., Marshall A., Freis A., Jauckus J., Strowitzki T., Germeyer A. GRN, NOTCH3, FN1, and PINK1 Expression in Eutopic Endometrium—Potential Biomarkers in the Detection of Endometriosis—A Pilot Study. J. Assist. Reprod. Genet. 2020;37:2723–2732. doi: 10.1007/s10815-020-01905-4. PubMed DOI PMC
Zhang M., Bener M.B., Jiang Z., Wang T., Esencan E., Scott Iii R., Horvath T., Seli E. Mitofusin 1 Is Required for Female Fertility and to Maintain Ovarian Follicular Reserve. Cell Death Dis. 2019;10:560. doi: 10.1038/s41419-019-1799-3. PubMed DOI PMC
Bonilla-Porras A.R., Arevalo-Arbelaez A., Alzate-Restrepo J.F., Velez-Pardo C., Jimenez-Del-Rio M. PARKIN Overexpression in Human Mesenchymal Stromal Cells from Wharton’s Jelly Suppresses 6-Hydroxydopamine-Induced Apoptosis: Potential Therapeutic Strategy in Parkinson’s Disease. Cytotherapy. 2018;20:45–61. doi: 10.1016/j.jcyt.2017.09.011. PubMed DOI
Chu C.-Y., Chen C.-F., Rajendran R.S., Shen C.-N., Chen T.-H., Yen C.-C., Chuang C.-K., Lin D.-S., Hsiao C.-D. Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish. PLoS ONE. 2012;7:e36474. doi: 10.1371/journal.pone.0036474. PubMed DOI PMC
Lee I.I., Kim J.J. Influence of AKT on Progesterone Action in Endometrial Diseases. Biol. Reprod. 2014;91:63. doi: 10.1095/biolreprod.114.119255. PubMed DOI PMC
Gao X., Li Y., Ma Z., Jing J., Zhang Z., Liu Y., Ding Z. Obesity Induces Morphological and Functional Changes in Female Reproductive System through Increases in NF-ΚB and MAPK Signaling in Mice. Reprod. Biol. Endocrinol. 2021;19:148. doi: 10.1186/s12958-021-00833-x. PubMed DOI PMC
Androvic P., Valihrach L., Elling J., Sjoback R., Kubista M. Two-Tailed RT-QPCR: A Novel Method for Highly Accurate MiRNA Quantification. Nucleic Acids Res. 2017;45:e144. doi: 10.1093/nar/gkx588. PubMed DOI PMC
Androvic P., Romanyuk N., Urdzikova-Machova L., Rohlova E., Kubista M., Valihrach L. Two-Tailed RT-QPCR Panel for Quality Control of Circulating MicroRNA Studies. Sci. Rep. 2019;9:4255. doi: 10.1038/s41598-019-40513-w. PubMed DOI PMC
Sahin C., Mamillapalli R., Yi K.W., Taylor H.S. MicroRNA Let-7b: A Novel Treatment for Endometriosis. J. Cell. Mol. Med. 2018;22:5346–5353. doi: 10.1111/jcmm.13807. PubMed DOI PMC
Liu G.-X., Ma S., Li Y., Yu Y., Zhou Y.-X., Lu Y.-D., Jin L., Wang Z.-L., Yu J.-H. Hsa-Let-7c Controls the Committed Differentiation of IGF-1-Treated Mesenchymal Stem Cells Derived from Dental Pulps by Targeting IGF-1R via the MAPK Pathways. Exp. Mol. Med. 2018;50:1–14. doi: 10.1038/s12276-018-0048-7. PubMed DOI PMC
Yu Y., Liao L., Shao B., Su X., Shuai Y., Wang H., Shang F., Zhou Z., Yang D., Jin Y. Knockdown of MicroRNA Let-7a Improves the Functionality of Bone Marrow-Derived Mesenchymal Stem Cells in Immunotherapy. Mol. Ther. 2017;25:480–493. doi: 10.1016/j.ymthe.2016.11.015. PubMed DOI PMC
Guo L., Zhao R.C.H., Wu Y. The Role of MicroRNAs in Self-Renewal and Differentiation of Mesenchymal Stem Cells. Exp. Hematol. 2011;39:608–616. doi: 10.1016/j.exphem.2011.01.011. PubMed DOI
Su W.-H., Wang C.-J., Hung Y.-Y., Lu C.-W., Ou C.-Y., Tseng S.-H., Tsai C.-C., Kao Y.-T., Chuang P.-C. MicroRNA-29a Exhibited Pro-Angiogenic and Anti-Fibrotic Features to Intensify Human Umbilical Cord Mesenchymal Stem Cells—Renovated Perfusion Recovery and Preventing against Fibrosis from Skeletal Muscle Ischemic Injury. Int. J. Mol. Sci. 2019;20:5859. doi: 10.3390/ijms20235859. PubMed DOI PMC
Tai L., Huang C.-J., Choo K.B., Cheong S.K., Kamarul T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int. J. Med. Sci. 2020;17:457–470. doi: 10.7150/ijms.38832. PubMed DOI PMC
Yildirim S.S., Akman D., Catalucci D., Turan B. Relationship Between Downregulation of MiRNAs and Increase of Oxidative Stress in the Development of Diabetic Cardiac Dysfunction: Junctin as a Target Protein of MiR-1. Cell Biochem. Biophys. 2013;67:1397–1408. doi: 10.1007/s12013-013-9672-y. PubMed DOI
He Y., Ma H., Wang J., Kang Y., Xue Q. MiR-20a-5p Inhibits Endometrial Cancer Progression by Targeting Janus Kinase 1. Oncol. Lett. 2021;21:427. doi: 10.3892/ol.2021.12688. PubMed DOI PMC
Kolanska K., Bendifallah S., Canlorbe G., Mekinian A., Touboul C., Aractingi S., Chabbert-Buffet N., Daraï E. Role of MiRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J. Clin. Med. 2021;10:3457. doi: 10.3390/jcm10163457. PubMed DOI PMC