Two-tailed RT-qPCR panel for quality control of circulating microRNA studies

. 2019 Mar 12 ; 9 (1) : 4255. [epub] 20190312

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30862831
Odkazy

PubMed 30862831
PubMed Central PMC6414634
DOI 10.1038/s41598-019-40513-w
PII: 10.1038/s41598-019-40513-w
Knihovny.cz E-zdroje

Circulating cell-free microRNAs are promising candidates for minimally invasive clinical biomarkers for the diagnosis, prognosis and monitoring of many human diseases. Despite substantial efforts invested in the field, the research so far has failed to deliver expected results. One of the contributing factors is general lack of agreement between various studies, partly due to the considerable technical challenges accompanying the workflow. Pre-analytical variables including sample collection, RNA isolation, and quantification are sources of bias that may hamper biological interpretation of the results. Here, we present a Two-tailed RT-qPCR panel for quality control, monitoring of technical performance, and optimization of microRNA profiling experiments from biofluid samples. The Two-tailed QC (quality control) panel is based on two sets of synthetic spike-in molecules and three endogenous microRNAs that are quantified with the highly specific Two-tailed RT-qPCR technology. The QC panel is a cost-effective way to assess quality of isolated microRNA, degree of inhibition, and erythrocyte contamination to ensure technical soundness of the obtained results. We provide assay sequences, detailed experimental protocol and guide to data interpretation. The application of the QC panel is demonstrated on the optimization of RNA isolation from biofluids with the miRNeasy Serum/Plasma Advanced Kit (Qiagen).

Zobrazit více v PubMed

He Y, et al. Current State of Circulating MicroRNAs as Cancer Biomarkers. Clin Chem. 2015;61:1138–1155. doi: 10.1373/clinchem.2015.241190. PubMed DOI

Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs - an update. Nat Rev Clin Oncol. 2018;15:541–563. doi: 10.1038/s41571-018-0035-x. PubMed DOI

Ojha, R., Nandani, R., Pandey, R. K., Mishra, A. & Prajapati, V. K. Emerging role of circulating microRNA in the diagnosis of human infectious diseases. J Cell Physiol, 10.1002/jcp.27127 (2018). PubMed

Blandford, S. N., Galloway, D. A. & Moore, C. S. The roles of extracellular vesicle microRNAs in the central nervous system. Glia, 10.1002/glia.23445 (2018). PubMed

Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–521. doi: 10.1038/nrendo.2013.86. PubMed DOI

Matsuzaki J, Ochiya T. Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review. Int J Clin Oncol. 2017;22:413–420. doi: 10.1007/s10147-017-1104-3. PubMed DOI

Kreth S, Hubner M, Hinske LC. MicroRNAs as Clinical Biomarkers and Therapeutic Tools in Perioperative Medicine. Anesth Analg. 2018;126:670–681. doi: 10.1213/ANE.0000000000002444. PubMed DOI

Lee I, Baxter D, Lee MY, Scherler K, Wang K. The Importance of Standardization on Analyzing Circulating RNA. Mol Diagn Ther. 2017;21:259–268. doi: 10.1007/s40291-016-0251-y. PubMed DOI PMC

Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. 2015;61:56–63. doi: 10.1373/clinchem.2014.221341. PubMed DOI

Kirschner MB, van Zandwijk N, Reid G. Cell-free microRNAs: potential biomarkers in need of standardized reporting. Front Genet. 2013;4:56. doi: 10.3389/fgene.2013.00056. PubMed DOI PMC

Moldovan L, et al. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18:371–390. doi: 10.1111/jcmm.12236. PubMed DOI PMC

Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA. 2012;3:601–616. doi: 10.1002/wrna.1120. PubMed DOI PMC

van Vliet EA, et al. Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia. 2017;58:2013–2024. doi: 10.1111/epi.13915. PubMed DOI

Watson, A. K. & Witwer, K. W. Do platform-specific factors explain microRNA profiling disparities? Clin Chem58, 472–474; author reply 474–475, 10.1373/clinchem.2011.175281 (2012). PubMed

Tuck MK, et al. Standard Operating Procedures for Serum and Plasma Collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group. J Proteome Res. 2009;8:113–117. doi: 10.1021/pr800545q. PubMed DOI PMC

Ainsztein AM, et al. The NIH Extracellular RNA Communication Consortium. J Extracell Vesicles. 2015;4:27493. doi: 10.3402/jev.v4.27493. PubMed DOI PMC

Laurent, L. C. & Alexander, R. Serum Collection Procedure (Small Scale) for the analysis of extracellular RNA (2015).

Laurent, L. C. & Alexander, R. Plasma Collection Procedure (Small Scale) for the analysis of extracellular RNA (2015).

McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833–840. doi: 10.1373/clinchem.2010.157198. PubMed DOI

Blondal T, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59:S1–6. doi: 10.1016/j.ymeth.2012.09.015. PubMed DOI

Marzi MJ, et al. Optimization and Standardization of Circulating MicroRNA Detection for Clinical Application: The miR-Test Case. Clin Chem. 2016;62:743–754. doi: 10.1373/clinchem.2015.251942. PubMed DOI

Li Y, Kowdley KV. Method for microRNA isolation from clinical serum samples. Anal Biochem. 2012;431:69–75. doi: 10.1016/j.ab.2012.09.007. PubMed DOI PMC

Mitchell PS, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC

Buschmann D, et al. Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Res. 2016;44:5995–6018. doi: 10.1093/nar/gkw545. PubMed DOI PMC

Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017;45:e144. doi: 10.1093/nar/gkx588. PubMed DOI PMC

El-Khoury V, Pierson S, Kaoma T, Bernardin F, Berchem G. Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci Rep. 2016;6:19529. doi: 10.1038/srep19529. PubMed DOI PMC

Li X, Mauro M, Williams Z. Comparison of plasma extracellular RNA isolation kits reveals kit-dependent biases. Biotechniques. 2015;59:13–17. doi: 10.2144/000114306. PubMed DOI

Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC

Max KEA, et al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci USA. 2018;115:E5334–E5343. doi: 10.1073/pnas.1714397115. PubMed DOI PMC

Pritchard CC, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012;5:492–497. doi: 10.1158/1940-6207.CAPR-11-0370. PubMed DOI PMC

Brunet-Vega A, et al. Variability in microRNA recovery from plasma: Comparison of five commercial kits. Anal Biochem. 2015;488:28–35. doi: 10.1016/j.ab.2015.07.018. PubMed DOI

McAlexander MA, Phillips MJ, Witwer KW. Comparison of Methods for miRNA Extraction from Plasma and Quantitative Recovery of RNA from Cerebrospinal Fluid. Front Genet. 2013;4:83. doi: 10.3389/fgene.2013.00083. PubMed DOI PMC

Ramon-Nunez LA, et al. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. Plos One. 2017;12:e0187005. doi: 10.1371/journal.pone.0187005. PubMed DOI PMC

Andreasen D, et al. Improved microRNA quantification in total RNA from clinical samples. Methods. 2010;50:S6–9. doi: 10.1016/j.ymeth.2010.01.006. PubMed DOI

Kirschner MB, et al. Haemolysis during sample preparation alters microRNA content of plasma. Plos One. 2011;6:e24145. doi: 10.1371/journal.pone.0024145. PubMed DOI PMC

Kirschner MB, et al. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front Genet. 2013;4:94. doi: 10.3389/fgene.2013.00094. PubMed DOI PMC

Kim DJ, et al. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn. 2012;14:71–80. doi: 10.1016/j.jmoldx.2011.09.002. PubMed DOI PMC

Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15:827–834. doi: 10.1016/j.jmoldx.2013.07.005. PubMed DOI

Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics. 2015;16:95. doi: 10.1186/s12864-015-1299-5. PubMed DOI PMC

Pizzamiglio S, et al. A methodological procedure for evaluating the impact of hemolysis on circulating microRNAs. Oncol Lett. 2017;13:315–320. doi: 10.3892/ol.2016.5452. PubMed DOI PMC

Shah JS, Soon PS, Marsh DJ. Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs. Plos One. 2016;11:e0153200. doi: 10.1371/journal.pone.0153200. PubMed DOI PMC

Kim YK, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46:893–895. doi: 10.1016/j.molcel.2012.05.036. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...