Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification

. 2017 Sep 06 ; 45 (15) : e144.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid28911110

MicroRNAs are a class of small non-coding RNAs that serve as important regulators of gene expression at the posttranscriptional level. They are stable in body fluids and pose great potential to serve as biomarkers. Here, we present a highly specific, sensitive and cost-effective system to quantify miRNA expression based on two-step RT-qPCR with SYBR-green detection chemistry called Two-tailed RT-qPCR. It takes advantage of novel, target-specific primers for reverse transcription composed of two hemiprobes complementary to two different parts of the targeted miRNA, connected by a hairpin structure. The introduction of a second probe ensures high sensitivity and enables discrimination of highly homologous miRNAs irrespectively of the position of the mismatched nucleotide. Two-tailed RT-qPCR has a dynamic range of seven logs and a sensitivity sufficient to detect down to ten target miRNA molecules. It is capable to capture the full isomiR repertoire, leading to accurate representation of the complete miRNA content in a sample. The reverse transcription step can be multiplexed and the miRNA profiles measured with Two-tailed RT-qPCR show excellent correlation with the industry standard TaqMan miRNA assays (r2 = 0.985). Moreover, Two-tailed RT-qPCR allows for rapid testing with a total analysis time of less than 2.5 hours.

Zobrazit více v PubMed

Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215–233. PubMed PMC

Huntzinger E., Izaurralde E.. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011; 12:99–110. PubMed

Kim V.N., Han J., Siomi M.C.. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009; 10:126–139. PubMed

Winter J., Jung S., Keller S., Gregory R.I., Diederichs S.. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009; 11:228–234. PubMed

Krol J., Loedige I., Filipowicz W.. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010; 11:597–610. PubMed

Tan L., Yu J.T., Tan L.. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Mol. Neurobiol. 2015; 51:1249–1262. PubMed

Croce C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009; 10:704–714. PubMed PMC

Xiao C., Rajewsky K.. MicroRNA control in the immune system: basic principles. Cell. 2009; 136:26–36. PubMed

Lin S., Gregory R.I.. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 2015; 15:321–333. PubMed PMC

Hatfield S.D., Shcherbata H.R., Fischer K.A., Nakahara K., Carthew R.W., Ruohola-Baker H.. Stem cell division is regulated by the microRNA pathway. Nature. 2005; 435:974–978. PubMed

He Y., Lin J., Kong D., Huang M., Xu C., Kim T.K., Etheridge A., Luo Y., Ding Y., Wang K.. Current State of Circulating MicroRNAs as Cancer Biomarkers. Clin. Chem. 2015; 61:1138–1155. PubMed

Basak I., Patil K.S., Alves G., Larsen J.P., Moller S.G.. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell. Mol. Life Sci.: CMLS. 2016; 73:811–827. PubMed PMC

Moldovan L., Batte K.E., Trgovcich J., Wisler J., Marsh C.B., Piper M.. Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med. 2014; 18:371–390. PubMed PMC

Schwarzenbach H., Nishida N., Calin G.A., Pantel K.. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014; 11:145–156. PubMed

Jiang H.X., Liang Z.Z., Ma Y.H., Kong D.M., Hong Z.Y.. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection. Anal. Chim. Acta. 2016; 943:114–122. PubMed

Liu H., Li L., Duan L., Wang X., Xie Y., Tong L., Wang Q., Tang B.. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Anal. Chem. 2013; 85:7941–7947. PubMed

Ma F., Liu M., Tang B., Zhang C.Y.. Rapid and sensitive quantification of microRNAs by isothermal helicase-dependent amplification. Anal. Chem. 2017; 89:6182–6187. PubMed

Deng R., Zhang K., Li J.. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc. Chem. Res. 2017; 50:1059–1068. PubMed

Mestdagh P., Hartmann N., Baeriswyl L., Andreasen D., Bernard N., Chen C.F., Cheo D., D’Andrade P., DeMayo M., Dennis L. et al. . Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study (vol 11, pg 809, 2014). Nat. Methods. 2014; 11:971–971. PubMed

Svoboda P. A toolbox for miRNA analysis. FEBS Lett. 2015; 589:1694–1701. PubMed

Pritchard C.C., Cheng H.H., Tewari M.. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012; 13:358–369. PubMed PMC

Aldridge S., Hadfield J.. Introduction to miRNA profiling technologies and cross-platform comparison. Methods Mol. Biol. 2012; 822:19–31. PubMed

Guo L., Chen F.. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene. 2014; 544:1–7. PubMed

Neilsen C.T., Goodall G.J., Bracken C.P.. IsomiRs–the overlooked repertoire in the dynamic microRNAome. Trends Genet.: TIG. 2012; 28:544–549. PubMed

Dellett M., Simpson D.A.. Considerations for optimization of microRNA PCR assays for molecular diagnosis. Expert Rev. Mol. Diagnost. 2016; 16:407–414. PubMed

Jin J., Vaud S., Zhelkovsky A.M., Posfai J., McReynolds L.A.. Sensitive and specific miRNA detection method using SplintR Ligase. Nucleic Acids Res. 2016; 44:e116. PubMed PMC

Li J., Yao B., Huang H., Wang Z., Sun C., Fan Y., Chang Q., Li S., Wang X., Xi J.. Real-time polymerase chain reaction microRNA detection based on enzymatic stem–loop probes ligation. Anal. Chem. 2009; 81:5446–5451. PubMed

Balcells I., Cirera S., Busk P.K.. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011; 11:70. PubMed PMC

Shi R., Chiang V.. Facile means for quantifying microRNA expression by real-time PCR. BioTechniques. 2005; 39:519–525. PubMed

Mei Q., Li X., Meng Y., Wu Z., Guo M., Zhao Y., Fu X., Han W.. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012; 7:e46890. PubMed PMC

Benes V., Collier P., Kordes C., Stolte J., Rausch T., Muckentaler M.U., Haussinger D., Castoldi M.. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Scientific Rep. 2015; 5:11590. PubMed PMC

Munafo D.B., Robb G.B.. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA. 2010; 16:2537–2552. PubMed PMC

Zhuang F., Fuchs R.T., Sun Z., Zheng Y., Robb G.B.. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res. 2012; 40:e54. PubMed PMC

Sorefan K., Pais H., Hall A.E., Kozomara A., Griffiths-Jones S., Moulton V., Dalmay T.. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012; 3:4. PubMed PMC

Yehudai-Resheff S., Schuster G.. Characterization of the E. coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res. 2000; 28:1139–1144. PubMed PMC

Raymond C.K., Roberts B.S., Garrett-Engele P., Lim L.P., Johnson J.M.. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 2005; 11:1737–1744. PubMed PMC

Sharbati-Tehrani S., Kutz-Lohroff B., Bergbauer R., Scholven J., Einspanier R.. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol. Biol. 2008; 9:34. PubMed PMC

Huang T., Yang J., Liu G., Jin W., Liu Z., Zhao S., Yao M.. Quantification of mature microRNAs using pincer probes and real-time PCR amplification. PLoS One. 2015; 10:e0120160. PubMed PMC

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R. et al. . Real-time quantification of microRNAs by stem–loop RT-PCR. Nucleic Acids Res. 2005; 33:e179. PubMed PMC

Benes V., Castoldi M.. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010; 50:244–249. PubMed

Schamberger A., Orban T.I.. 3′ IsomiR species and DNA contamination influence reliable quantification of microRNAs by stem–loop quantitative PCR. PLoS One. 2014; 9:e106315. PubMed PMC

Soundara Pandi S.P., Chen M., Guduric-Fuchs J., Xu H., Simpson D.A.. Extremely complex populations of small RNAs in the mouse retina and RPE/choroid. Invest. Ophthalmol. Vis. Sci. 2013; 54:8140–8151. PubMed

Lao K., Xu N.L., Yeung V., Chen C., Livak K.J., Straus N.A.. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem. Biophys. Res. Commun. 2006; 343:85–89. PubMed

Tang F., Hajkova P., Barton S.C., O’Carroll D., Lee C., Lao K., Surani M.A.. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 2006; 1:1154–1159. PubMed

Tang F., Hajkova P., Barton S.C., Lao K., Surani M.A.. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006; 34:e9. PubMed PMC

Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J.. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008; 36:D154–D158. PubMed PMC

Markham N.R., Zuker M.. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 2008; 453:3–31. PubMed

Forootan A., Sjöback R., Björkman J., Sjögreen B., Linz L., Kubista M.. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 12:1–6. PubMed PMC

Liang Y., Ridzon D., Wong L., Chen C.. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007; 8:166. PubMed PMC

Stahlberg A., Hakansson J., Xian X., Semb H., Kubista M.. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 2004; 50:509–515. PubMed

Stahlberg A., Kubista M., Pfaffl M.. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 2004; 50:1678–1680. PubMed

Vester B., Wengel J.. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 2004; 43:13233–13241. PubMed

Veedu R.N., Vester B., Wengel J.. Enzymatic incorporation of LNA nucleotides into DNA strands. Chembiochem. 2007; 8:490–492. PubMed

Gan L., Denecke B.. Profiling pre-MicroRNA and mature microRNA expressions using a single microarray and avoiding separate sample preparation. Microarrays. 2013; 2:24–33. PubMed PMC

Schmittgen T.D., Lee E.J., Jiang J., Sarkar A., Yang L., Elton T.S., Chen C.. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008; 44:31–38. PubMed PMC

Li N., You X., Chen T., Mackowiak S.D., Friedlander M.R., Weigt M., Du H., Gogol-Doring A., Chang Z., Dieterich C. et al. . Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery. Nucleic Acids Res. 2013; 41:3619–3634. PubMed PMC

Faridani O.R., Abdullayev I., Hagemann-Jensen M., Schell J.P., Lanner F., Sandberg R.. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 2016; 34:1264–1266. PubMed

Stahlberg A., Krzyzanowski P.M., Jackson J.B., Egyud M., Stein L., Godfrey T.E.. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016; 44:e105. PubMed PMC

Telonis A.G., Loher P., Jing Y., Londin E., Rigoutsos I.. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015; 43:9158–9175. PubMed PMC

Loher P., Londin E.R., Rigoutsos I.. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget. 2014; 5:8790–8802. PubMed PMC

Siddle K.J., Tailleux L., Deschamps M., Loh Y.H., Deluen C., Gicquel B., Antoniewski C., Barreiro L.B., Farinelli L., Quintana-Murci L.. bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genet. 2015; 11:e1005064. PubMed PMC

Cloonan N., Wani S., Xu Q., Gu J., Lea K., Heater S., Barbacioru C., Steptoe A.L., Martin H.C., Nourbakhsh E. et al. . MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011; 12:R126. PubMed PMC

Wang S., Xu Y., Li M., Tu J., Lu Z.. Dysregulation of miRNA isoform level at 5′ end in Alzheimer's disease. Gene. 2016; 584:167–172. PubMed

Ahmed F., Senthil-Kumar M., Lee S., Dai X., Mysore K.S., Zhao P.X.. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol. 2014; 11:1414–1429. PubMed PMC

Koppers-Lalic D., Hackenberg M., de Menezes R., Misovic B., Wachalska M., Geldof A., Zini N., de Reijke T., Wurdinger T., Vis A. et al. . Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016; 7:22566–22578. PubMed PMC

McGahon M.K., Yarham J.M., Daly A., Guduric-Fuchs J., Ferguson L.J., Simpson D.A., Collins A.. Distinctive profile of IsomiR expression and novel microRNAs in rat heart left ventricle. PLoS One. 2013; 8:e65809. PubMed PMC

Baran-Gale J., Fannin E.E., Kurtz C.L., Sethupathy P.. Beta cell 5′-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One. 2013; 8:e73240. PubMed PMC

Wu H., Neilson J.R., Kumar P., Manocha M., Shankar P., Sharp P.A., Manjunath N.. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One. 2007; 2:e1020. PubMed PMC

Honda S., Kirino Y.. Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res. 2015; 43:e77. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace