Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, validační studie
PubMed
28911110
PubMed Central
PMC5587787
DOI
10.1093/nar/gkx588
PII: 3958703
Knihovny.cz E-zdroje
- MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- mikro RNA analýza genetika MeSH
- myši MeSH
- prekurzory RNA analýza genetika MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Názvy látek
- mikro RNA MeSH
- prekurzory RNA MeSH
MicroRNAs are a class of small non-coding RNAs that serve as important regulators of gene expression at the posttranscriptional level. They are stable in body fluids and pose great potential to serve as biomarkers. Here, we present a highly specific, sensitive and cost-effective system to quantify miRNA expression based on two-step RT-qPCR with SYBR-green detection chemistry called Two-tailed RT-qPCR. It takes advantage of novel, target-specific primers for reverse transcription composed of two hemiprobes complementary to two different parts of the targeted miRNA, connected by a hairpin structure. The introduction of a second probe ensures high sensitivity and enables discrimination of highly homologous miRNAs irrespectively of the position of the mismatched nucleotide. Two-tailed RT-qPCR has a dynamic range of seven logs and a sensitivity sufficient to detect down to ten target miRNA molecules. It is capable to capture the full isomiR repertoire, leading to accurate representation of the complete miRNA content in a sample. The reverse transcription step can be multiplexed and the miRNA profiles measured with Two-tailed RT-qPCR show excellent correlation with the industry standard TaqMan miRNA assays (r2 = 0.985). Moreover, Two-tailed RT-qPCR allows for rapid testing with a total analysis time of less than 2.5 hours.
Laboratory of Gene Expression Institute of Biotechnology CAS Biocev Vestec 252 50 Czech Republic
Laboratory of Growth Regulators Faculty of Science Palacky University Olomouc 783 71 Czech Republic
Zobrazit více v PubMed
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215–233. PubMed PMC
Huntzinger E., Izaurralde E.. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011; 12:99–110. PubMed
Kim V.N., Han J., Siomi M.C.. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009; 10:126–139. PubMed
Winter J., Jung S., Keller S., Gregory R.I., Diederichs S.. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009; 11:228–234. PubMed
Krol J., Loedige I., Filipowicz W.. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010; 11:597–610. PubMed
Tan L., Yu J.T., Tan L.. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Mol. Neurobiol. 2015; 51:1249–1262. PubMed
Croce C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009; 10:704–714. PubMed PMC
Xiao C., Rajewsky K.. MicroRNA control in the immune system: basic principles. Cell. 2009; 136:26–36. PubMed
Lin S., Gregory R.I.. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 2015; 15:321–333. PubMed PMC
Hatfield S.D., Shcherbata H.R., Fischer K.A., Nakahara K., Carthew R.W., Ruohola-Baker H.. Stem cell division is regulated by the microRNA pathway. Nature. 2005; 435:974–978. PubMed
He Y., Lin J., Kong D., Huang M., Xu C., Kim T.K., Etheridge A., Luo Y., Ding Y., Wang K.. Current State of Circulating MicroRNAs as Cancer Biomarkers. Clin. Chem. 2015; 61:1138–1155. PubMed
Basak I., Patil K.S., Alves G., Larsen J.P., Moller S.G.. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell. Mol. Life Sci.: CMLS. 2016; 73:811–827. PubMed PMC
Moldovan L., Batte K.E., Trgovcich J., Wisler J., Marsh C.B., Piper M.. Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med. 2014; 18:371–390. PubMed PMC
Schwarzenbach H., Nishida N., Calin G.A., Pantel K.. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014; 11:145–156. PubMed
Jiang H.X., Liang Z.Z., Ma Y.H., Kong D.M., Hong Z.Y.. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection. Anal. Chim. Acta. 2016; 943:114–122. PubMed
Liu H., Li L., Duan L., Wang X., Xie Y., Tong L., Wang Q., Tang B.. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Anal. Chem. 2013; 85:7941–7947. PubMed
Ma F., Liu M., Tang B., Zhang C.Y.. Rapid and sensitive quantification of microRNAs by isothermal helicase-dependent amplification. Anal. Chem. 2017; 89:6182–6187. PubMed
Deng R., Zhang K., Li J.. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc. Chem. Res. 2017; 50:1059–1068. PubMed
Mestdagh P., Hartmann N., Baeriswyl L., Andreasen D., Bernard N., Chen C.F., Cheo D., D’Andrade P., DeMayo M., Dennis L. et al. . Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study (vol 11, pg 809, 2014). Nat. Methods. 2014; 11:971–971. PubMed
Svoboda P. A toolbox for miRNA analysis. FEBS Lett. 2015; 589:1694–1701. PubMed
Pritchard C.C., Cheng H.H., Tewari M.. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012; 13:358–369. PubMed PMC
Aldridge S., Hadfield J.. Introduction to miRNA profiling technologies and cross-platform comparison. Methods Mol. Biol. 2012; 822:19–31. PubMed
Guo L., Chen F.. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene. 2014; 544:1–7. PubMed
Neilsen C.T., Goodall G.J., Bracken C.P.. IsomiRs–the overlooked repertoire in the dynamic microRNAome. Trends Genet.: TIG. 2012; 28:544–549. PubMed
Dellett M., Simpson D.A.. Considerations for optimization of microRNA PCR assays for molecular diagnosis. Expert Rev. Mol. Diagnost. 2016; 16:407–414. PubMed
Jin J., Vaud S., Zhelkovsky A.M., Posfai J., McReynolds L.A.. Sensitive and specific miRNA detection method using SplintR Ligase. Nucleic Acids Res. 2016; 44:e116. PubMed PMC
Li J., Yao B., Huang H., Wang Z., Sun C., Fan Y., Chang Q., Li S., Wang X., Xi J.. Real-time polymerase chain reaction microRNA detection based on enzymatic stem–loop probes ligation. Anal. Chem. 2009; 81:5446–5451. PubMed
Balcells I., Cirera S., Busk P.K.. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011; 11:70. PubMed PMC
Shi R., Chiang V.. Facile means for quantifying microRNA expression by real-time PCR. BioTechniques. 2005; 39:519–525. PubMed
Mei Q., Li X., Meng Y., Wu Z., Guo M., Zhao Y., Fu X., Han W.. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012; 7:e46890. PubMed PMC
Benes V., Collier P., Kordes C., Stolte J., Rausch T., Muckentaler M.U., Haussinger D., Castoldi M.. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Scientific Rep. 2015; 5:11590. PubMed PMC
Munafo D.B., Robb G.B.. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA. 2010; 16:2537–2552. PubMed PMC
Zhuang F., Fuchs R.T., Sun Z., Zheng Y., Robb G.B.. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res. 2012; 40:e54. PubMed PMC
Sorefan K., Pais H., Hall A.E., Kozomara A., Griffiths-Jones S., Moulton V., Dalmay T.. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012; 3:4. PubMed PMC
Yehudai-Resheff S., Schuster G.. Characterization of the E. coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res. 2000; 28:1139–1144. PubMed PMC
Raymond C.K., Roberts B.S., Garrett-Engele P., Lim L.P., Johnson J.M.. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 2005; 11:1737–1744. PubMed PMC
Sharbati-Tehrani S., Kutz-Lohroff B., Bergbauer R., Scholven J., Einspanier R.. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol. Biol. 2008; 9:34. PubMed PMC
Huang T., Yang J., Liu G., Jin W., Liu Z., Zhao S., Yao M.. Quantification of mature microRNAs using pincer probes and real-time PCR amplification. PLoS One. 2015; 10:e0120160. PubMed PMC
Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R. et al. . Real-time quantification of microRNAs by stem–loop RT-PCR. Nucleic Acids Res. 2005; 33:e179. PubMed PMC
Benes V., Castoldi M.. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010; 50:244–249. PubMed
Schamberger A., Orban T.I.. 3′ IsomiR species and DNA contamination influence reliable quantification of microRNAs by stem–loop quantitative PCR. PLoS One. 2014; 9:e106315. PubMed PMC
Soundara Pandi S.P., Chen M., Guduric-Fuchs J., Xu H., Simpson D.A.. Extremely complex populations of small RNAs in the mouse retina and RPE/choroid. Invest. Ophthalmol. Vis. Sci. 2013; 54:8140–8151. PubMed
Lao K., Xu N.L., Yeung V., Chen C., Livak K.J., Straus N.A.. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem. Biophys. Res. Commun. 2006; 343:85–89. PubMed
Tang F., Hajkova P., Barton S.C., O’Carroll D., Lee C., Lao K., Surani M.A.. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 2006; 1:1154–1159. PubMed
Tang F., Hajkova P., Barton S.C., Lao K., Surani M.A.. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006; 34:e9. PubMed PMC
Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J.. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008; 36:D154–D158. PubMed PMC
Markham N.R., Zuker M.. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 2008; 453:3–31. PubMed
Forootan A., Sjöback R., Björkman J., Sjögreen B., Linz L., Kubista M.. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 12:1–6. PubMed PMC
Liang Y., Ridzon D., Wong L., Chen C.. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007; 8:166. PubMed PMC
Stahlberg A., Hakansson J., Xian X., Semb H., Kubista M.. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 2004; 50:509–515. PubMed
Stahlberg A., Kubista M., Pfaffl M.. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 2004; 50:1678–1680. PubMed
Vester B., Wengel J.. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 2004; 43:13233–13241. PubMed
Veedu R.N., Vester B., Wengel J.. Enzymatic incorporation of LNA nucleotides into DNA strands. Chembiochem. 2007; 8:490–492. PubMed
Gan L., Denecke B.. Profiling pre-MicroRNA and mature microRNA expressions using a single microarray and avoiding separate sample preparation. Microarrays. 2013; 2:24–33. PubMed PMC
Schmittgen T.D., Lee E.J., Jiang J., Sarkar A., Yang L., Elton T.S., Chen C.. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008; 44:31–38. PubMed PMC
Li N., You X., Chen T., Mackowiak S.D., Friedlander M.R., Weigt M., Du H., Gogol-Doring A., Chang Z., Dieterich C. et al. . Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery. Nucleic Acids Res. 2013; 41:3619–3634. PubMed PMC
Faridani O.R., Abdullayev I., Hagemann-Jensen M., Schell J.P., Lanner F., Sandberg R.. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 2016; 34:1264–1266. PubMed
Stahlberg A., Krzyzanowski P.M., Jackson J.B., Egyud M., Stein L., Godfrey T.E.. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016; 44:e105. PubMed PMC
Telonis A.G., Loher P., Jing Y., Londin E., Rigoutsos I.. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015; 43:9158–9175. PubMed PMC
Loher P., Londin E.R., Rigoutsos I.. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget. 2014; 5:8790–8802. PubMed PMC
Siddle K.J., Tailleux L., Deschamps M., Loh Y.H., Deluen C., Gicquel B., Antoniewski C., Barreiro L.B., Farinelli L., Quintana-Murci L.. bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genet. 2015; 11:e1005064. PubMed PMC
Cloonan N., Wani S., Xu Q., Gu J., Lea K., Heater S., Barbacioru C., Steptoe A.L., Martin H.C., Nourbakhsh E. et al. . MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011; 12:R126. PubMed PMC
Wang S., Xu Y., Li M., Tu J., Lu Z.. Dysregulation of miRNA isoform level at 5′ end in Alzheimer's disease. Gene. 2016; 584:167–172. PubMed
Ahmed F., Senthil-Kumar M., Lee S., Dai X., Mysore K.S., Zhao P.X.. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol. 2014; 11:1414–1429. PubMed PMC
Koppers-Lalic D., Hackenberg M., de Menezes R., Misovic B., Wachalska M., Geldof A., Zini N., de Reijke T., Wurdinger T., Vis A. et al. . Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016; 7:22566–22578. PubMed PMC
McGahon M.K., Yarham J.M., Daly A., Guduric-Fuchs J., Ferguson L.J., Simpson D.A., Collins A.. Distinctive profile of IsomiR expression and novel microRNAs in rat heart left ventricle. PLoS One. 2013; 8:e65809. PubMed PMC
Baran-Gale J., Fannin E.E., Kurtz C.L., Sethupathy P.. Beta cell 5′-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One. 2013; 8:e73240. PubMed PMC
Wu H., Neilson J.R., Kumar P., Manocha M., Shankar P., Sharp P.A., Manjunath N.. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One. 2007; 2:e1020. PubMed PMC
Honda S., Kirino Y.. Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res. 2015; 43:e77. PubMed PMC
Specific microRNAs and heart failure: time for the next step toward application?
The Role of miR-21 in Osteoblasts-Osteoclasts Coupling In Vitro
Two-tailed RT-qPCR panel for quality control of circulating microRNA studies