Dystonia and mitochondrial disease: the movement disorder connection revisited in 900 genetically diagnosed patients

. 2024 Jul ; 271 (7) : 4685-4692. [epub] 20240522

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38775934
Odkazy

PubMed 38775934
PubMed Central PMC11233361
DOI 10.1007/s00415-024-12447-5
PII: 10.1007/s00415-024-12447-5
Knihovny.cz E-zdroje

Zobrazit více v PubMed

Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28:863–873. doi: 10.1002/MDS.25475. PubMed DOI PMC

Dzinovic I, Boesch S, Škorvánek M, et al. Genetic overlap between dystonia and other neurologic disorders: a study of 1,100 exomes. Park Relat Disord. 2022;102:1–6. doi: 10.1016/j.parkreldis.2022.07.003. PubMed DOI

Jinnah HA, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis. 2019 doi: 10.1016/j.nbd.2019.05.014. PubMed DOI

Zech M, Jech R, Boesch S, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020;19:908–918. doi: 10.1016/S1474-4422(20)30312-4. PubMed DOI PMC

Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–178. doi: 10.1016/S1474-4422(19)30287-X. PubMed DOI PMC

Wallace DC, Murdock DG. Mitochondria and dystonia: the movement disorder connection? Proc Natl Acad Sci U S A. 1999;96:1817–1819. doi: 10.1073/PNAS.96.5.1817/ASSET/09D559F9-E759-4744-9C3C-C0F2116441A0/ASSETS/GRAPHIC/PQ0690296002.JPEG. PubMed DOI PMC

Schlieben LD, Prokisch H. The dimensions of primary mitochondrial disorders. Front Cell Dev Biol. 2020;8:600079. doi: 10.3389/FCELL.2020.600079/BIBTEX. PubMed DOI PMC

Schreglmann SR, Riederer F, Galovic M, et al. Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord. 2018;33:146–155. doi: 10.1002/MDS.27174. PubMed DOI

Ticci C, Orsucci D, Ardissone A, et al. Movement disorders in children with a mitochondrial disease: a cross-sectional survey from the nationwide Italian collaborative network of mitochondrial diseases. J Clin Med. 2021;10:2063. doi: 10.3390/JCM10102063. PubMed DOI PMC

Montano V, Orsucci D, Carelli V, et al. Adult-onset mitochondrial movement disorders: a national picture from the Italian Network. J Neurol. 2022;269:1413–1421. doi: 10.1007/S00415-021-10697-1/FIGURES/2. PubMed DOI PMC

Martikainen MH, Ng YS, Gorman GS, et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016;73:668–674. doi: 10.1001/JAMANEUROL.2016.0355. PubMed DOI

Schapira AHV, Warner T, Gash MT, et al. Complex I function in familial and sporadic dystonia. Ann Neurol. 1997;41:556–559. doi: 10.1002/ANA.410410421. PubMed DOI

Benecke R, Strümper P, Weiss H. Electron transfer complex I defect in idiopathic dystonia. Ann Neurol. 1992;32:683–686. doi: 10.1002/ANA.410320512. PubMed DOI

Indelicato E, Boesch S, Mencacci NE, et al. Dystonia in ATP synthase defects: reconnecting mitochondria and dopamine. Mov Disord. 2024;39:29–35. doi: 10.1002/MDS.29657. PubMed DOI

Stenton SL, Shimura M, Piekutowska-Abramczuk D, et al (2021) Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv 2021.06.21.21259171. 10.1101/2021.06.21.21259171

Zech M, Kopajtich R, Steinbrücker K, et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol. 2022;91:225–237. doi: 10.1002/ANA.26293. PubMed DOI PMC

Morava E, Van Den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67:1823–1826. doi: 10.1212/01.WNL.0000244435.27645.54/SUPPL_FILE/MORAVA_67-1823.PDF. PubMed DOI

Van Gassen KLI, Van Der Heijden CDCC, De Bot ST, et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain. 2012;135:2994–3004. doi: 10.1093/BRAIN/AWS224. PubMed DOI

Ortega-Suero G, Fernández-Matarrubia M, López-Valdés E, Arpa J. A novel missense OPA1 mutation in a patient with dominant optic atrophy and cervical dystonia. Mov Disord Clin Pract. 2019;6:171. doi: 10.1002/MDC3.12699. PubMed DOI PMC

Keller N, Paketci C, Edem P, et al. De novo DNM1L variant presenting with severe muscular atrophy, dystonia and sensory neuropathy. Eur J Med Genet. 2021 doi: 10.1016/J.EJMG.2020.104134. PubMed DOI

Finsterer J, Mehri S. Progressive mitochondrial encephalopathy due to the novel compound heterozygous variants c.182C>T and c.446A>AG in NARS2: a case report. Cureus. 2023 doi: 10.7759/cureus.43969. PubMed DOI PMC

Koens LH, Klamer MR, Sival DA, et al. A screening tool to quickly identify movement disorders in patients with inborn errors of metabolism. Mov Disord. 2023 doi: 10.1002/mds.29332. PubMed DOI

Amprosi M, Zech M, Steiger R, et al. Familial writer’s cramp: a clinical clue for inherited coenzyme Q10 deficiency. Neurogenetics. 2021;22:81–86. doi: 10.1007/s10048-020-00624-3. PubMed DOI PMC

Nasca A, Mencacci NE, Invernizzi F, et al. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain. 2023;146:2730–2738. doi: 10.1093/BRAIN/AWAD068. PubMed DOI PMC

Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018;147:293. doi: 10.1016/B978-0-444-63233-3.00019-1. PubMed DOI PMC

Sturchio A, Marsili L, Mahajan A, et al. How have advances in genetic technology modified movement disorder nosology? Eur J Neurol. 2020;27:1461–1470. doi: 10.1111/ENE.14294. PubMed DOI

Lumsden DE, Cif L, Capuano A, Allen NM. The changing face of reported status dystonicus—a systematic review. Park Relat Disord. 2023 doi: 10.1016/j.parkreldis.2023.105438. PubMed DOI

Saini AG, Hassan I, Sharma K, et al. Status dystonicus in children: a cross-sectional study and review of literature. J Child Neurol. 2022;37:441–450. doi: 10.1177/08830738221081593. PubMed DOI

Rauschenberger L, Knorr S, Pisani A, et al. Second hit hypothesis in dystonia: dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis. 2021;159:105511. doi: 10.1016/J.NBD.2021.105511. PubMed DOI

Lima T, Li Y, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. Nat Aging. 2022 doi: 10.1038/s43587-022-00191-2. PubMed DOI

Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel) 2022 doi: 10.3390/GENES13030471. PubMed DOI PMC

Di Bella D, Lazzaro F, Brusco A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010 doi: 10.1038/ng.544. PubMed DOI

Dodson M, De La Vega MR, Cholanians AB, et al. Modulating NRF2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019;59:555–575. doi: 10.1146/ANNUREV-PHARMTOX-010818-021856/CITE/REFWORKS. PubMed DOI PMC

Pilotto F, Chellapandi DM, Puccio H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med. 2024;30:117–125. doi: 10.1016/j.molmed.2023.12.002. PubMed DOI

Boesch S, Indelicato E. Approval of omaveloxolone for Friedreich ataxia. Nat Rev Neurol. 2024;2024:1–2. doi: 10.1038/s41582-024-00957-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...