Dystonia and mitochondrial disease: the movement disorder connection revisited in 900 genetically diagnosed patients
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu dopisy
PubMed
38775934
PubMed Central
PMC11233361
DOI
10.1007/s00415-024-12447-5
PII: 10.1007/s00415-024-12447-5
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- dystonie * genetika diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondriální nemoci * genetika diagnóza MeSH
- mladiství MeSH
- mutace MeSH
- pohybové poruchy genetika diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- dopisy MeSH
2nd Department of Neurology Faculty of Medicine Comenius University Bratislava Slovakia
Department of Neurology P J Safarik University Kosice Slovakia
Department of Neurology University Hospital of L Pasteur Kosice Slovakia
Department of Neurology Zvolen Hospital Zvolen Slovakia
Institute of Human Genetics Technical University of Munich School of Medicine Munich Germany
Munich Cluster for Systems Neurology Munich Germany
Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA 02115 USA
Zobrazit více v PubMed
Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28:863–873. doi: 10.1002/MDS.25475. PubMed DOI PMC
Dzinovic I, Boesch S, Škorvánek M, et al. Genetic overlap between dystonia and other neurologic disorders: a study of 1,100 exomes. Park Relat Disord. 2022;102:1–6. doi: 10.1016/j.parkreldis.2022.07.003. PubMed DOI
Jinnah HA, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis. 2019 doi: 10.1016/j.nbd.2019.05.014. PubMed DOI
Zech M, Jech R, Boesch S, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020;19:908–918. doi: 10.1016/S1474-4422(20)30312-4. PubMed DOI PMC
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–178. doi: 10.1016/S1474-4422(19)30287-X. PubMed DOI PMC
Wallace DC, Murdock DG. Mitochondria and dystonia: the movement disorder connection? Proc Natl Acad Sci U S A. 1999;96:1817–1819. doi: 10.1073/PNAS.96.5.1817/ASSET/09D559F9-E759-4744-9C3C-C0F2116441A0/ASSETS/GRAPHIC/PQ0690296002.JPEG. PubMed DOI PMC
Schlieben LD, Prokisch H. The dimensions of primary mitochondrial disorders. Front Cell Dev Biol. 2020;8:600079. doi: 10.3389/FCELL.2020.600079/BIBTEX. PubMed DOI PMC
Schreglmann SR, Riederer F, Galovic M, et al. Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord. 2018;33:146–155. doi: 10.1002/MDS.27174. PubMed DOI
Ticci C, Orsucci D, Ardissone A, et al. Movement disorders in children with a mitochondrial disease: a cross-sectional survey from the nationwide Italian collaborative network of mitochondrial diseases. J Clin Med. 2021;10:2063. doi: 10.3390/JCM10102063. PubMed DOI PMC
Montano V, Orsucci D, Carelli V, et al. Adult-onset mitochondrial movement disorders: a national picture from the Italian Network. J Neurol. 2022;269:1413–1421. doi: 10.1007/S00415-021-10697-1/FIGURES/2. PubMed DOI PMC
Martikainen MH, Ng YS, Gorman GS, et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016;73:668–674. doi: 10.1001/JAMANEUROL.2016.0355. PubMed DOI
Schapira AHV, Warner T, Gash MT, et al. Complex I function in familial and sporadic dystonia. Ann Neurol. 1997;41:556–559. doi: 10.1002/ANA.410410421. PubMed DOI
Benecke R, Strümper P, Weiss H. Electron transfer complex I defect in idiopathic dystonia. Ann Neurol. 1992;32:683–686. doi: 10.1002/ANA.410320512. PubMed DOI
Indelicato E, Boesch S, Mencacci NE, et al. Dystonia in ATP synthase defects: reconnecting mitochondria and dopamine. Mov Disord. 2024;39:29–35. doi: 10.1002/MDS.29657. PubMed DOI
Stenton SL, Shimura M, Piekutowska-Abramczuk D, et al (2021) Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv 2021.06.21.21259171. 10.1101/2021.06.21.21259171
Zech M, Kopajtich R, Steinbrücker K, et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol. 2022;91:225–237. doi: 10.1002/ANA.26293. PubMed DOI PMC
Morava E, Van Den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67:1823–1826. doi: 10.1212/01.WNL.0000244435.27645.54/SUPPL_FILE/MORAVA_67-1823.PDF. PubMed DOI
Van Gassen KLI, Van Der Heijden CDCC, De Bot ST, et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain. 2012;135:2994–3004. doi: 10.1093/BRAIN/AWS224. PubMed DOI
Ortega-Suero G, Fernández-Matarrubia M, López-Valdés E, Arpa J. A novel missense OPA1 mutation in a patient with dominant optic atrophy and cervical dystonia. Mov Disord Clin Pract. 2019;6:171. doi: 10.1002/MDC3.12699. PubMed DOI PMC
Keller N, Paketci C, Edem P, et al. De novo DNM1L variant presenting with severe muscular atrophy, dystonia and sensory neuropathy. Eur J Med Genet. 2021 doi: 10.1016/J.EJMG.2020.104134. PubMed DOI
Finsterer J, Mehri S. Progressive mitochondrial encephalopathy due to the novel compound heterozygous variants c.182C>T and c.446A>AG in NARS2: a case report. Cureus. 2023 doi: 10.7759/cureus.43969. PubMed DOI PMC
Koens LH, Klamer MR, Sival DA, et al. A screening tool to quickly identify movement disorders in patients with inborn errors of metabolism. Mov Disord. 2023 doi: 10.1002/mds.29332. PubMed DOI
Amprosi M, Zech M, Steiger R, et al. Familial writer’s cramp: a clinical clue for inherited coenzyme Q10 deficiency. Neurogenetics. 2021;22:81–86. doi: 10.1007/s10048-020-00624-3. PubMed DOI PMC
Nasca A, Mencacci NE, Invernizzi F, et al. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain. 2023;146:2730–2738. doi: 10.1093/BRAIN/AWAD068. PubMed DOI PMC
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018;147:293. doi: 10.1016/B978-0-444-63233-3.00019-1. PubMed DOI PMC
Sturchio A, Marsili L, Mahajan A, et al. How have advances in genetic technology modified movement disorder nosology? Eur J Neurol. 2020;27:1461–1470. doi: 10.1111/ENE.14294. PubMed DOI
Lumsden DE, Cif L, Capuano A, Allen NM. The changing face of reported status dystonicus—a systematic review. Park Relat Disord. 2023 doi: 10.1016/j.parkreldis.2023.105438. PubMed DOI
Saini AG, Hassan I, Sharma K, et al. Status dystonicus in children: a cross-sectional study and review of literature. J Child Neurol. 2022;37:441–450. doi: 10.1177/08830738221081593. PubMed DOI
Rauschenberger L, Knorr S, Pisani A, et al. Second hit hypothesis in dystonia: dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis. 2021;159:105511. doi: 10.1016/J.NBD.2021.105511. PubMed DOI
Lima T, Li Y, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. Nat Aging. 2022 doi: 10.1038/s43587-022-00191-2. PubMed DOI
Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel) 2022 doi: 10.3390/GENES13030471. PubMed DOI PMC
Di Bella D, Lazzaro F, Brusco A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010 doi: 10.1038/ng.544. PubMed DOI
Dodson M, De La Vega MR, Cholanians AB, et al. Modulating NRF2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019;59:555–575. doi: 10.1146/ANNUREV-PHARMTOX-010818-021856/CITE/REFWORKS. PubMed DOI PMC
Pilotto F, Chellapandi DM, Puccio H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med. 2024;30:117–125. doi: 10.1016/j.molmed.2023.12.002. PubMed DOI
Boesch S, Indelicato E. Approval of omaveloxolone for Friedreich ataxia. Nat Rev Neurol. 2024;2024:1–2. doi: 10.1038/s41582-024-00957-9. PubMed DOI