Variants in Mitochondrial ATP Synthase Cause Variable Neurologic Phenotypes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Else Kröner-Fresenius-Stiftung
R01 HG009141
NHGRI NIH HHS - United States
01GM1906A
Federal Ministry of Education and Research
Technische Universität München
R00 HL143036
NHLBI NIH HHS - United States
U01 HG011755
NHGRI NIH HHS - United States
I4704-B
Federal Ministry of Education and Research
01KU2016A
Federal Ministry of Education and Research
R01 NS106298
NINDS NIH HHS - United States
Medizinische Universität Innsbruck
NV19-04-00233
Ministry of Education
01GM1920A
Federal Ministry of Education and Research
Research Foundation
Charles University
I4695-B
Federal Ministry of Education and Research
Helmholtz Zentrum München
UM1 HG008900
NHGRI NIH HHS - United States
I 4695
Austrian Science Fund FWF - Austria
PubMed
34954817
PubMed Central
PMC9939050
DOI
10.1002/ana.26293
Knihovny.cz E-zdroje
- MeSH
- dystonie enzymologie genetika MeSH
- epilepsie genetika MeSH
- fenotyp MeSH
- genetická variace MeSH
- lidé MeSH
- missense mutace MeSH
- mitochondriální ADP/ATP-translokasy genetika MeSH
- mitochondriální nemoci enzymologie genetika MeSH
- mitochondriální protonové ATPasy genetika MeSH
- mitochondrie enzymologie genetika MeSH
- molekulární modely MeSH
- mutace MeSH
- nemoci nervového systému enzymologie genetika MeSH
- neurodegenerativní nemoci enzymologie genetika MeSH
- neurovývojové poruchy enzymologie genetika MeSH
- proteomika MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATP5F1A protein, human MeSH Prohlížeč
- ATP5PD protein, human MeSH Prohlížeč
- mitochondriální ADP/ATP-translokasy MeSH
- mitochondriální protonové ATPasy MeSH
OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.
Broad Center for Mendelian Genomics Broad Institute of MIT and Harvard Cambridge MA
Children's Hospital Kreiskliniken Reutlingen Germany
Département de Biochimie et Génétique Centre Hospitalier Universitaire d'Angers Angers France
Department of Genetics Washington University School of Medicine St Louis MO
Department of Medical Genetic Diskapi Yildirim Beyazit Training and Research Hospital Ankara Turkey
Department of Neurology Medical University of Innsbruck Innsbruck Austria
Department of Pediatrics Washington University School of Medicine St Louis MO
Institute of Neurogenomics Helmholtz Zentrum München Munich Germany
Kinderkrankenhaus St Marien gGmbH Zentrum für Kinder und Jugendmedizin Landshut Germany
Lehrstuhl für Neurogenetik Technische Universität München Munich Germany
Munich Cluster for Systems Neurology Munich Germany
Pediatric Neurology Department CHU Clocheville Tours France
Program in Medical and Population Genetics Broad Institute Cambridge MA
Technical University of Munich School of Medicine Institute of Human Genetics Munich Germany
Unité Mixte de Recherche MITOVASC CNRS 6015 INSERM 1083 Université d'Angers Angers France
University Children's Hospital Paracelsus Medical University Salzburg Austria
Zobrazit více v PubMed
Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016. Oct 20;2:16080. PubMed
Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol. 2001. Sep;2(9):669–77. PubMed
He J, Ford HC, Carroll J, et al. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc Natl Acad Sci U S A. 2018. Mar 20;115(12):2988–93. PubMed PMC
Jonckheere AI, Smeitink JA, Rodenburg RJ. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 2012. Mar;35(2):211–25. PubMed PMC
Schlieben LD, Prokisch H. The Dimensions of Primary Mitochondrial Disorders. Front Cell Dev Biol. 2020;8:600079. PubMed PMC
Galber C, Carissimi S, Baracca A, Giorgio V. The ATP Synthase Deficiency in Human Diseases. Life (Basel). 2021. Apr 8;11(4). PubMed PMC
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R. ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol. 2018;9:329. PubMed PMC
Neilson DE, Zech M, Hufnagel RB, et al. A Novel Variant of ATP5MC3 Associated with Both Dystonia and Spastic Paraplegia. Mov Disord. 2021. Oct 11. PubMed PMC
Mayr JA, Havlickova V, Zimmermann F, et al. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet. 2010. Sep 1;19(17):3430–9. PubMed
Jonckheere AI, Renkema GH, Bras M, et al. A complex V ATP5A1 defect causes fatal neonatal mitochondrial encephalopathy. Brain. 2013. May;136(Pt 5):1544–54. PubMed
Lieber DS, Calvo SE, Shanahan K, et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology. 2013. May 7;80(19):1762–70. PubMed PMC
Olahova M, Yoon WH, Thompson K, et al. Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. Am J Hum Genet. 2018. Mar 1;102(3):494–504. PubMed PMC
Barca E, Ganetzky RD, Potluri P, et al. USMG5 Ashkenazi Jewish founder mutation impairs mitochondrial complex V dimerization and ATP synthesis. Hum Mol Genet. 2018. Oct 1;27(19):3305–12. PubMed PMC
Stenton SL, Shimura M, Piekutowska-Abramczuk D, et al. Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv [Preprint] 10.1101/2021.06.21.21259171. DOI
Zech M, Jech R, Boesch S, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020. Nov;19(11):908–18. PubMed PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015. Oct;36(10):928–30. PubMed PMC
Duzkale N, Oz O, Turkmenoglu TT, Cetinkaya K, Eren T, Yalcin S. Investigation of Hereditary Cancer Predisposition Genes of Patients with Colorectal Cancer: Single-centre Experience. J Coll Physicians Surg Pak. 2021. Jul;30(7):811–6. PubMed
Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet. 2020. Oct;52(10):1046–56. PubMed PMC
Ziegler A, Bader P, McWalter K, et al. Confirmation that variants in TTI2 are responsible for autosomal recessive intellectual disability. Clin Genet. 2019. Oct;96(4):354–8. PubMed
The UniProt C UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017. Jan 4;45(D1):D158–D69. PubMed PMC
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011. Oct 11;7:539. PubMed PMC
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001. May;11(5):863–74. PubMed PMC
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010. Apr;7(4):248–9. PubMed PMC
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014. Mar;46(3):310–5. PubMed PMC
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000. Jan 1;28(1):235–42. PubMed PMC
Feichtinger RG, Olahova M, Kishita Y, et al. Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. Am J Hum Genet. 2017. Oct 5;101(4):525–38. PubMed PMC
Charif M, Gueguen N, Ferre M, et al. Dominant ACO2 mutations are a frequent cause of isolated optic atrophy. Brain Commun. 2021;3(2):fcab063. PubMed PMC
Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017. Jun 12;8:15824. PubMed PMC
Invernizzi F, Legati A, Nasca A, et al. Myopathic mitochondrial DNA depletion syndrome associated with biallelic variants in LIG3. Brain. 2021. Jun 24. PubMed PMC
Kopajtich R, Smirnov D, Stenton SL, et al. Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. bioRxiv [Preprint] doi:10.1101/2021.03.09.21253187. DOI
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015. Apr 20;43(7):e47. PubMed PMC
Gueguen N, Piarroux J, Sarzi E, et al. Optic neuropathy linked to ACAD9 pathogenic variants: A potentially riboflavin-responsive disorder? Mitochondrion. 2021. Jul;59:169–74. PubMed
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020. May;581(7809):434–43. PubMed PMC
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015. May;17(5):405–24. PubMed PMC
Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016. Jan 4;44(D1):D862–8. PubMed PMC
Kaplanis J, Samocha KE, Wiel L, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020. Oct;586(7831):757–62. PubMed PMC
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett. 2021. Apr;595(8):1132–58. PubMed
Kucharczyk R, Zick M, Bietenhader M, et al. Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. Biochim Biophys Acta. 2009. Jan;1793(1):186–99. PubMed
Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020. Jun;56:102784. PubMed PMC
Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase
In vitro human cell culture models in a bench-to-bedside approach to epilepsy