In vitro human cell culture models in a bench-to-bedside approach to epilepsy

. 2024 Jun ; 9 (3) : 865-890. [epub] 20240418

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38637998

Grantová podpora
GA22-28265S Grantová Agentura České Republiky
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy
343421 Grantová Agentura, Univerzita Karlova
NV19-04-00369 Agentura Pro Zdravotnický Výzkum České Republiky

Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.

Zobrazit více v PubMed

Garcia‐Rosa S, de Freitas BB, da Rocha VF, Goulart E, Silva Araujo BH. Personalized medicine using cutting edge technologies for genetic epilepsies. Curr Neuropharmacol. 2021;19(6):813–831. PubMed PMC

Wang J, Lin Z‐J, Liu L, Xu H‐Q, Shi Y‐W, Yi Y‐H, et al. Epilepsy‐associated genes. Seizure. 2017;44:11–20. PubMed

Oegema R, Barakat TS, Wilke M, Stouffs K, Amrom D, Aronica E, et al. International consensus recommendations on the diagnostic work‐up for malformations of cortical development. Nat Rev Neurol. 2020;16(11):618–635. PubMed PMC

Baldassari S, Ribierre T, Marsan E, Adle‐Biassette H, Ferrand‐Sorbets S, Bulteau C, et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 2019;138(6):885–900. 10.1007/s00401-019-02061-5 PubMed DOI PMC

Sim NS, Ko A, Kim WK, Kim SH, Kim JS, Shim K‐W, et al. Precise detection of low‐level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 2019;138(6):901–912. 10.1007/s00401-019-02052-6 PubMed DOI

Kim S, Baldassari S, Sim NS, Chipaux M, Dorfmüller G, Kim DS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients. Ann Neurol. 2021;89(6):1248–1252. 10.1002/ana.26080 PubMed DOI

Helbig I, Heinzen EL, Mefford HC. Primer part 1‐the building blocks of epilepsy genetics. Epilepsia. 2016;57(6):861–868. 10.1111/epi.13381 PubMed DOI

Helbig I, Heinzen EL, Mefford HC, International League Against Epilepsy Genetics Commission , Berkovic SF, Lowenstein DH, et al. Genetic literacy series: primer part 2‐paradigm shifts in epilepsy genetics. Epilepsia. 2018;59(6):1138–1147. 10.1111/epi.14193 PubMed DOI

Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum Mutat. 2005;25(6):535–542. 10.1002/humu.20178 PubMed DOI

Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N. Epileptic focus and alteration of metabolism. Int Rev Neurobiol. 2014;114:209–243. PubMed

Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14(9):956–966. PubMed

Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun. 2021;3(4):fcab222. 10.1093/braincomms/fcab222/6375444 PubMed DOI PMC

Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, et al. Utility of genetic testing for therapeutic decision‐making in adults with epilepsy. Epilepsia. 2020;61(6):1234–1239. 10.1111/epi.16533 PubMed DOI

Campbell C, Leu C, Feng Y‐CA, Wolking S, Moreau C, Ellis C, et al. The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine. 2022;81:104098. PubMed PMC

Martins Custodio H, Clayton LM, Bellampalli R, Pagni S, Silvennoinen K, Caswell R, et al. Widespread genomic influences on phenotype in Dravet syndrome, a ‘monogenic’ condition. Brain. 2023;146(9):3885–3897. PubMed PMC

Jones RSG, da Silva AB, Whittaker RG, Woodhall GL, Cunningham MO. Human brain slices for epilepsy research: pitfalls, solutions, and future challenges. J Neurosci Methods. 2016;260:221–232. 10.1016/j.jneumeth.2015.09.021 PubMed DOI

Baumgartner C, Koren JP, Britto‐Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Research. 2019;8:1818. PubMed PMC

Simkin D, Kiskinis E. Modeling pediatric epilepsy through iPSC‐based technologies. Epilepsy Curr. 2018;18(4):240–245. 10.5698/1535-7597.18.4.240 PubMed DOI PMC

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–1041. PubMed PMC

Bocchi R, Masserdotti G, Götz M. Direct neuronal reprogramming: fast forward from new concepts toward therapeutic approaches. Neuron. 2022;110(3):366–393. PubMed

Sim NS, Seo Y, Lim JS, Kim WK, Son H, Kim HD, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N‐glycosylation. Neurol Genet. 2018;4(6):e294. PubMed PMC

Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, et al. ‘Channeling’ therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci. 2022;43(5):392–405. PubMed PMC

Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhardi E‐M, et al. Plasmid‐based generation of induced neural stem cells from adult human fibroblasts. Front Cell Neurosci. 2016;10:1–12. 10.3389/fncel.2016.00245 PubMed DOI PMC

Miskinyte G, Devaraju K, Grønning Hansen M, Monni E, Tornero D, Woods NB, et al. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther. 2017;8(1):207. 10.1186/s13287-017-0658-3 PubMed DOI PMC

Kraus L, Hetsch F, Schneider UC, Radbruch H, Holtkamp M, Meier JC, et al. Dimethylethanolamine decreases epileptiform activity in acute human hippocampal slices in vitro. Front Mol Neurosci. 2019;12:209. 10.3389/fnmol.2019.00209 PubMed DOI PMC

Eugène E, Cluzeaud F, Cifuentes‐Diaz C, Fricker D, Le Duigou C, Clemenceau S, et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods. 2014;235:234–244. PubMed PMC

Wickham J, Brödjegård NG, Vighagen R, Pinborg LH, Bengzon J, Woldbye DPD, et al. Prolonged life of human acute hippocampal slices from temporal lobe epilepsy surgery. Sci Rep. 2018;8(1):4158. PubMed PMC

Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B, et al. Optogenetic control of human neurons in organotypic brain cultures. Sci Rep. 2016;6(1):24818. 10.1038/srep24818 PubMed DOI PMC

James AM, Wei Y‐H, Pang C‐Y, Murphy MP. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J. 1996;318(2):401–407. PubMed PMC

De la Mata M, Garrido‐Maraver J, Cotán D, Cordero MD, Oropesa‐Ávila M, Izquierdo LG, et al. Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics. 2012;9(2):446–463. 10.1007/s13311-012-0103-3 PubMed DOI PMC

Cotán D, Cordero MD, Garrido‐Maraver J, Oropesa‐Avila M, Rodríguez‐Hernández Á, Izquierdo LG, et al. Secondary coenzyme Q 10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J. 2011;25(8):2669–2687. 10.1096/fj.10-165340 PubMed DOI

Hengel H, Bosso‐Lefèvre C, Grady G, Szenker‐Ravi E, Li H, Pierce S, et al. Loss‐of‐function mutations in UDP‐glucose 6‐dehydrogenase cause recessive developmental epileptic encephalopathy. Nat Commun. 2020;11(1):595. PubMed PMC

Kahn‐Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, et al. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease‐related epilepsy. PLoS One. 2019;14(3):e0214250. 10.1371/journal.pone.0214250 PubMed DOI PMC

Reinert M‐C, Pacheu‐Grau D, Catarino CB, Klopstock T, Ohlenbusch A, Schittkowski M, et al. Sulthiame impairs mitochondrial function in vitro and may trigger the onset of visual loss in Leber hereditary optic neuropathy. Orphanet J Rare Dis. 2021;16(1):64. 10.1186/s13023-021-01690-y PubMed DOI PMC

Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, et al. TSC patient‐derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin‐induced MNK‐eIF4E signaling. Mol Autism. 2020;11(1):2. 10.1186/s13229-019-0311-3 PubMed DOI PMC

Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, et al. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC‐derived GABAergic neurons. Hum Mol Genet. 2021;30(14):1337–1348. PubMed

Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci USA. 2016;113(3):751–756. 10.1073/pnas.1524013113 PubMed DOI PMC

Meijer M, Rehbach K, Brunner JW, Classen JA, Lammertse HCA, van Linge LA, et al. A single‐cell model for synaptic transmission and plasticity in human iPSC‐derived neurons. Cell Rep. 2019;27(7):2199–2211.e6. PubMed

Brant B, Stern T, Shekhidem HA, Mizrahi L, Rosh I, Stern Y, et al. IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient‐derived neurons and deficient synaptic transmission. Mol Psychiatry. 2021;26(12):7498–7508. PubMed PMC

Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen P‐F, et al. Biallelic mutations in TSC2 Lead to abnormalities associated with cortical tubers in human iPSC‐derived neurons. J Neurosci. 2019;39(47):9294–9305. 10.1523/JNEUROSCI.0642-19.2019 PubMed DOI PMC

Shahsavani M, Pronk RJ, Falk R, Lam M, Moslem M, Linker SB, et al. An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry. 2018;23:1674–1684. 10.1038/mp.2017.175 PubMed DOI

Tidball AM, Lopez‐Santiago LF, Yuan Y, Glenn TW, Margolis JL, Clayton Walker J, et al. Variant‐specific changes in persistent or resurgent sodium current in SCN8A‐related epilepsy patient‐derived neurons. Brain. 2020;143(10):3025–3040. PubMed PMC

van Hugte EJH, Lewerissa EI, Wu KM, Scheefhals N, Parodi G, van Voorst TW, et al. SCN1A‐deficient excitatory neuronal networks display mutation‐specific phenotypes. Brain. 2023;146(12):5153–5167. PubMed PMC

Jiao J, Yang Y, Shi Y, Chen J, Gao R, Fan Y, et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet. 2013;22(21):4241–4252. 10.1093/hmg/ddt275 PubMed DOI

Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5:e13073. PubMed PMC

Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen‐Steijger P, van Hugte E, Dooves S, et al. Neuron‐glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC‐derived models. Stem Cell Reports. 2019;12(1):42–56. PubMed PMC

Marinowic DR, Majolo F, Zanirati GG, Plentz I, Neto EP, Palmini ALF, et al. Analysis of genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in induced pluripotent stem cells (iPSCs) from patients with focal cortical dysplasia. Brain Res Bull. 2020;155:112–118. PubMed

Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, et al. 16pdel lipid changes in iPSC‐derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience. 2022;25(1):103551. PubMed PMC

Liu Y, Lopez‐Santiago LF, Yuan Y, Jones JM, Zhang H, O'Malley HA, et al. Dravet syndrome patient‐derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 2013;74(1):128–139. 10.1002/ana.23897 PubMed DOI PMC

Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM 1 epilepsy. EMBO Mol Med. 2020;12(6):e11419. 10.15252/emmm.201911419 PubMed DOI PMC

Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci. 2021;24(10):1488–1500. PubMed PMC

Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, et al. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med. 2021;13(8):e13610. 10.15252/emmm.202013610 PubMed DOI PMC

Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron–glia interactions in tuberous sclerosis complex affect the synaptic balance in 2D and organoid cultures. Cells. 2021;10(1):134. PubMed PMC

Avansini SH, Puppo F, Adams JW, Vieira AS, Coan AC, Rogerio F, et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain. 2022;145(6):1962–1977. PubMed PMC

Wu W, Yao H, Negraes PD, Wang J, Trujillo CA, de Souza JS, et al. Neuronal hyperexcitability and ion channel dysfunction in CDKL5‐deficiency patient iPSC‐derived cortical organoids. Neurobiol Dis. 2022;174:105882. PubMed

Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber V‐E, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375(6579):eabf5546. 10.1126/science.abf5546 PubMed DOI PMC

Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, et al. MeCP2‐regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 2018;23(4):1051–1065. PubMed PMC

Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw‐Boris A, et al. Human iPSC‐derived cerebral organoids model cellular features of Lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20(4):435–449.e4. PubMed PMC

Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, et al. An organoid‐based model of cortical development identifies non‐cell‐autonomous defects in Wnt signaling contributing to Miller‐Dieker syndrome. Cell Rep. 2017;19(1):50–59. PubMed

Zayat V, Kuczynska Z, Liput M, Metin E, Rzonca‐Niewczas S, Smyk M, et al. The generation of human iPSC lines from three individuals with Dravet syndrome and characterization of neural differentiation markers in iPSC‐derived ventral forebrain organoid model. Cells. 2023;12(2):339. PubMed PMC

Dang LT, Glanowska KM, Iffland PH II, Barnes AE, Baybis M, Liu Y, et al. Multimodal analysis of STRADA function in brain development. Front Cell Neurosci. 2020;14:122. 10.3389/fncel.2020.00122 PubMed DOI PMC

Villanueva‐Paz M, Povea‐Cabello S, Villalón‐García I, Suárez‐Rivero JM, Álvarez‐Córdoba M, de la Mata M, et al. Pathophysiological characterization of MERRF patient‐specific induced neurons generated by direct reprogramming. Biochim Biophys Acta, Mol Cell Res. 2019;1866(5):861–881. 10.1016/j.bbamcr.2019.02.010 PubMed DOI

Villanueva‐Paz M, Povea‐Cabello S, Villalón‐García I, Álvarez‐Córdoba M, Suárez‐Rivero JM, Talaverón‐Rey M, et al. Parkin‐mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165726. 10.1016/j.bbadis.2020.165726 PubMed DOI

Kano S, Yuan M, Cardarelli RA, Maegawa G, Higurashi N, Gaval‐Cruz M, et al. Clinical utility of neuronal cells directly converted from fibroblasts of patients for neuropsychiatric disorders: studies of lysosomal storage diseases and channelopathy. Curr Mol Med. 2015;15(2):138–145. PubMed PMC

Oby E, Caccia S, Vezzani A, Moeddel G, Hallene K, Guiso G, et al. In vitro responsiveness of human‐drug‐resistant tissue to antiepileptic drugs: insights into the mechanisms of pharmacoresistance. Brain Res. 2006;1086(1):201–213. PubMed

Witkin JM, Schober DA, Gleason SD, Catlow JT, Porter WJ, Reel J, et al. Targeted blockade of TARP‐γ8‐associated AMPA receptors: anticonvulsant activity with the selective antagonist LY3130481 (CERC‐611). CNS Neurol Disord Drug Targets. 2018;16(10):1099–1110. PubMed

Lie AA, Blümcke I, Volsen SG, Wiestler OD, Elger CE, Beck H. Distribution of voltage‐dependent calcium channel beta subunits in the hippocampus of patients with temporal lobe epilepsy. Neuroscience. 1999;93(2):449–456. PubMed

Møller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V, Bebin EM, et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2016;2(6):e118. 10.1212/NXG.0000000000000118 PubMed DOI PMC

Marinowic DR, Majolo F, Sebben AD, Da Silva VD, Lopes TG, Paglioli E, et al. Induced pluripotent stem cells from patients with focal cortical dysplasia and refractory epilepsy. Mol Med Rep. 2017;15(4):2049–2056. 10.3892/mmr.2017.6264 PubMed DOI PMC

Garcia CAB, Carvalho SCS, Yang X, Ball LL, George RD, James KN, et al. mTOR pathway somatic variants and the molecular pathogenesis of hemimegalencephaly. Epilepsia Open. 2020;5(1):97–106. 10.1002/epi4.12377 PubMed DOI PMC

Vantroys E, Larson A, Friederich M, Knight K, Swanson MA, Powell CA, et al. New insights into the phenotype of FARS2 deficiency. Mol Genet Metab. 2017;122(4):172–181. PubMed PMC

Cepeda C, André VM, Hauptman JS, Yamazaki I, Huynh MN, Chang JW, et al. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia type IIB compared with tuberous sclerosis complex. Neurobiol Dis. 2012;45(1):310–321. PubMed PMC

Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang S‐C. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8(9):1670–1679. PubMed PMC

Nakayama T, Ishii A, Yoshida T, Nasu H, Shimojima K, Yamamoto T, et al. Somatic mosaic deletions involving SCN1A cause Dravet syndrome. Am J Med Genet A. 2018;176(3):657–662. 10.1002/ajmg.a.38596 PubMed DOI

Haanpää MK, Ng BG, Gallant NM, Singh KE, Brown C, Kimonis V, et al. ALG11‐CDG syndrome: expanding the phenotype. Am J Med Genet A. 2019;179(3):498–502. 10.1002/ajmg.a.61046 PubMed DOI PMC

Chen G, Zhou H, Lu Y, Wang Y, Li Y, Xue J, et al. Case report: a novel mosaic nonsense mutation of PCDH19 in a Chinese male with febrile epilepsy. Front Neurol. 2022;13:992781. PubMed PMC

Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol. 2016;7(4):210–219. PubMed PMC

Kluckova D, Kolnikova M, Lacinova L, Jurkovicova‐Tarabova B, Foltan T, Demko V, et al. A study among the genotype, functional alternations, and phenotype of 9 SCN1A mutations in epilepsy patients. Sci Rep. 2020;10(1):10288. PubMed PMC

Blazekovic A, Gotovac Jercic K, Meglaj S, Duranovic V, Prpic I, Lozic B, et al. Genetics of pediatric epilepsy: next‐generation sequencing in clinical practice. Genes (Basel). 2022;13(8):1466. PubMed PMC

McKnight D, Bristow SL, Truty RM, Morales A, Stetler M, Westbrook MJ, et al. Multigene panel testing in a large cohort of adults with epilepsy: diagnostic yield and clinically actionable genetic findings. Neurol Genet. 2022;8(1):e650. PubMed PMC

Rawat C, Kushwaha S, Srivastava AK, Kukreti R. Peripheral blood gene expression signatures associated with epilepsy and its etiologic classification. Genomics. 2020;112(1):218–224. PubMed

Zech M, Kopajtich R, Steinbrücker K, Bris C, Gueguen N, Feichtinger RG, et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol. 2022;91(2):225–237. 10.1002/ana.26293 PubMed DOI PMC

Handoko M, Emrick LT, Rosenfeld JA, Wang X, Tran AA, Turner A, et al. Recurrent mosaic MTOR c.5930C > T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: case report and review of the literature. Am J Med Genet A. 2019;179(3):475–479. 10.1002/ajmg.a.61007 PubMed DOI

Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct neuronal reprogramming: bridging the gap between basic science and clinical application. Front Cell Dev Biol. 2021;9:681087. 10.3389/fcell.2021.681087 PubMed DOI PMC

Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(3):261–268. 10.1002/ajmg.b.30272 PubMed DOI

Kim Y, Zheng X, Ansari Z, Bunnell MC, Herdy JR, Traxler L, et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 2018;23(9):2550–2558. PubMed PMC

Moudy AM, Handran SD, Goldberg MP, Ruffin N, Karl I, Kranz‐Eble P, et al. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci. 1995;92(3):729–733. 10.1073/pnas.92.3.729 PubMed DOI PMC

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. PubMed

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. PubMed

Yu J, Vodyanik MA, Smuga‐Otto K, Antosiewicz‐Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. 10.1126/science.1151526 PubMed DOI

Park I‐H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease‐specific induced pluripotent stem cells. Cell. 2008;134(5):877–886. PubMed PMC

Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–953. 10.1126/science.1164270 PubMed DOI

Ghosh D, Mehta N, Patil A, Sengupta J. Ethical issues in biomedical use of human embryonic stem cells (hESCs). J Reprod Heal Med. 2016;2:S37–S47.

Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int. 2014;2014:1–12. PubMed PMC

Streckfuss‐Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human‐induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2013;34(33):2618–2629. 10.1093/eurheartj/ehs203 PubMed DOI

Mack AA, Kroboth S, Rajesh D, Wang WB. Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non‐integrating Episomal vectors. PLoS One. 2011;6(11):e27956. 10.1371/journal.pone.0027956 PubMed DOI PMC

Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc. 2012;7(4):718–728. PubMed

Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, Kutalkova K, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells. Stem Cells Dev. 2018;27(1):10–22. 10.1089/scd.2017.0132 PubMed DOI PMC

Raska J, Klimova H, Sheardova K, Fedorova V, Hribkova H, Pospisilova V, et al. Generation of three human iPSC lines from patients with a spontaneous late‐onset Alzheimer's disease and three sex‐ and age‐matched healthy controls. Stem Cell Res. 2021;53:102378. PubMed

Kim Y, Rim YA, Yi H, Park N, Park S‐H, Ju JH. The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation. Stem Cells Int. 2016;2016:1–9. PubMed PMC

Vlahos K, Sourris K, Mayberry R, McDonald P, Bruveris FF, Schiesser JV, et al. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res. 2019;34:101380. PubMed

Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, et al. Generating a non‐integrating human induced pluripotent stem cell Bank from urine‐derived cells. PLoS One. 2013;8(8):e70573. 10.1371/journal.pone.0070573 PubMed DOI PMC

Shi T, Cheung M. Urine‐derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci. 2021;11(1):85. 10.1186/s13578-021-00594-5 PubMed DOI PMC

Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single Lentiviral stem cell cassette. Stem Cells. 2009;27(3):543–549. PubMed PMC

Yu J, Hu K, Smuga‐Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. 10.1126/science.1172482 PubMed DOI PMC

Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, et al. Improved Sendai viral system for reprogramming to naive pluripotency. Cell Rep Methods. 2022;2(11):100317. PubMed PMC

Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394(1):189–193. PubMed

Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc. 2013;8(3):568–582. PubMed

Anokye‐Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA‐mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–388. PubMed PMC

Min L, Yin Y, Zhao Q, Wang S. Establishment of a human iPSC line (SUTCMi001‐a) derived from a healthy donor. Stem Cell Res. 2022;63:102849. PubMed

Nelakanti RV, Kooreman NG, Wu JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. Curr Protoc Stem Cell Biol. 2015;32(1):4A.8.1–4A.8.17. 10.1002/9780470151808.sc04a08s32 PubMed DOI PMC

Buta C, David R, Dressel R, Emgård M, Fuchs C, Gross U, et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res. 2013;11(1):552–562. PubMed PMC

Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity risk of iPSCs in vivo: nip it in the bud. Precis Clin Med. 2022;5(1):1–11. 10.1093/pcmedi/pbac004/6521459 PubMed DOI PMC

Benchoua A, Lasbareilles M, Tournois J. Contribution of human pluripotent stem cell‐based models to drug discovery for neurological disorders. Cells. 2021;10(12):3290. PubMed PMC

Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220–223. PubMed PMC

Maeda H, Chiyonobu T, Yoshida M, Yamashita S, Zuiki M, Kidowaki S, et al. Establishment of isogenic iPSCs from an individual with SCN1A mutation mosaicism as a model for investigating neurocognitive impairment in Dravet syndrome. J Hum Genet. 2016;61(6):565–569. PubMed

Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, et al. Need for high‐resolution genetic analysis in iPSC: results and lessons from the ForIPS consortium. Sci Rep. 2018;8(1):17201. PubMed PMC

Tidball AM, Parent JM. Concise review: exciting cells: modeling genetic epilepsies with patient‐derived induced pluripotent stem cells. Stem Cells. 2016;34(1):27–33. PubMed PMC

McKinney C. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen Res. 2017;12(7):1062. PubMed PMC

Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, et al. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci. 2020;108:103535. PubMed

Lybrand ZR, Goswami S, Hsieh J. Stem cells: a path toward improved epilepsy therapies. Neuropharmacology. 2020;168:107781. PubMed PMC

Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn. 2020;249(1):56–75. 10.1002/dvdy.79 PubMed DOI

Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int J Mol Sci. 2020;21(2):482. PubMed PMC

Javaid MS, Tan T, Dvir N, Anderson A, O'Brien TJ, Kwan P, et al. Human in vitro models of epilepsy using embryonic and induced pluripotent stem cells. Cells. 2022;11(24):3957. PubMed PMC

Gong X, Zheng Z, Yang T, Zheng H, Xiao X, Jia N. Generation of an isogenic gene‐corrected iPSC line (OGHFUi001‐A‐1) from a type 1 early infantile epileptic encephalopathy (EIEE1) patient with a hemizygous R330L mutation in the ARX gene. Stem Cell Res. 2022;60:102693. PubMed

Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255. 10.1371/journal.pone.0025255 PubMed DOI PMC

Tanaka Y, Sone T, Higurashi N, Sakuma T, Suzuki S, Ishikawa M, et al. Generation of D1‐1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using TALEN‐mediated editing of the SCN1A gene. Stem Cell Res. 2018;28:100–104. PubMed

Zeng H, Guo M, Martins‐Taylor K, Wang X, Zhang Z, Park JW, et al. Specification of region‐specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 2010;5(7):e11853. 10.1371/journal.pone.0011853 PubMed DOI PMC

Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 2005;23(6):781–790. PubMed PMC

Hu B‐Y, Zhang S‐C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc. 2009;4(9):1295–1304. PubMed PMC

Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, et al. Directed differentiation of human‐induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27(4):806–811. PubMed PMC

Krencik R, Weick JP, Liu Y, Zhang Z‐J, Zhang S‐C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29(6):528–534. PubMed PMC

Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 2013;31(5):941–952. PubMed

Pistollato F, Canovas‐Jorda D, Zagoura D, Price A. Protocol for the differentiation of human induced pluripotent stem cells into mixed cultures of neurons and glia for neurotoxicity testing. J Vis Exp. 2017;124:e55702. PubMed PMC

Lopez‐Lengowski K, Kathuria A, Gerlovin K, Karmacharya R. Co‐culturing microglia and cortical neurons differentiated from human induced pluripotent stem cells. J Vis Exp. 2021;175:e62480. PubMed PMC

Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient‐specific iPSCs. Nature. 2009;461(7262):402–406. PubMed PMC

Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–539. PubMed PMC

Wattanapanitch M, Klincumhom N, Potirat P, Amornpisutt R, Lorthongpanich C, U‐pratya Y, et al. Dual small‐molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages. PLoS One. 2014;9(9):e106952. 10.1371/journal.pone.0106952 PubMed DOI PMC

Qi Y, Zhang X‐J, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small‐molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35(2):154–163. PubMed PMC

Autar K, Guo X, Rumsey JW, Long CJ, Akanda N, Jackson M, et al. A functional hiPSC‐cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Reports. 2022;17(1):96–109. PubMed PMC

Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single‐step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–798. PubMed PMC

Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME. Transcription factor‐mediated differentiation of human iPSCs into neurons. Curr Protoc Cell Biol. 2018;79(1):e51. PubMed PMC

Ryan SK, Jordan‐Sciutto KL, Anderson SA. Protocol for tri‐culture of hiPSC‐derived neurons, astrocytes, and microglia. STAR Protoc. 2020;1(3):100190. PubMed PMC

D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, et al. Large‐scale generation of human iPSC‐derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis. 2014;10(4):365–377. 10.1080/15476278.2015.1011921 PubMed DOI PMC

Thodeson DM, Brulet R, Hsieh J. Neural stem cells and epilepsy: functional roles and disease‐in‐a‐dish models. Cell Tissue Res. 2018;371(1):47–54. 10.1007/s00441-017-2675-z PubMed DOI

Galiakberova AA, Dashinimaev EB. Neural stem cells and methods for their generation from induced pluripotent stem cells in vitro. Front Cell Dev Biol. 2020;8:815. 10.3389/fcell.2020.00815 PubMed DOI PMC

Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836–1846. PubMed

Gunhanlar N, Shpak G, van der Kroeg M, Gouty‐Colomer LA, Munshi ST, Lendemeijer B, et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol Psychiatry. 2018;23(5):1336–1344. PubMed PMC

Yokoi R, Shigemoto‐Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC‐derived cortical neural networks. J Pharmacol Sci. 2022;148(2):267–278. PubMed

Peitz M, Krutenko T, Brüstle O. Protocol for the standardized generation of forward programmed cryopreservable excitatory and inhibitory forebrain neurons. STAR Protoc. 2020;1(1):100038. PubMed PMC

Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports. 2014;2(3):295–310. 10.1016/j.stemcr.2014.01.009 PubMed DOI PMC

Sarkar A, Mei A, Paquola ACM, Stern S, Bardy C, Klug JR, et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell. 2018;22(5):684–697.e9. PubMed PMC

Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos‐Fogelquist S, Mendes APD, et al. Differentiation of inflammation‐responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Reports. 2017;8(6):1757–1769. PubMed PMC

Voulgaris D, Nikolakopoulou P, Herland A. Generation of human iPSC‐derived astrocytes with a mature star‐shaped phenotype for CNS modeling. Stem Cell Rev Rep. 2022;18(7):2494–2512. 10.1007/s12015-022-10376-2 PubMed DOI PMC

Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L. Electrical responses and spontaneous activity of human iPS‐derived neuronal networks characterized for 3‐month culture with 4096‐electrode arrays. Front Neurosci. 2016;10:121. 10.3389/fnins.2016.00121 PubMed DOI PMC

Lancaster MA, Renner M, Martin C‐A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–379. PubMed PMC

Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain‐region‐specific organoids using mini‐bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–1254. PubMed PMC

Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self‐organizing human embryonic stem cell‐derived dorsomedial telencephalic tissue. Nat Commun. 2015;6(1):8896. PubMed PMC

Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran H‐D, Göke J, et al. Midbrain‐like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin‐producing neurons. Cell Stem Cell. 2016;19(2):248–257. PubMed PMC

Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–678. PubMed PMC

Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self‐organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10(4):537–550. PubMed

Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–2340. 10.1038/nprot.2014.158 PubMed DOI PMC

Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang Y‐J, et al. Engineering of human brain organoids with a functional vascular‐like system. Nat Methods. 2019;16(11):1169–1175. PubMed PMC

Kook MG, Lee S‐E, Shin N, Kong D, Kim D‐H, Kim M‐S, et al. Generation of cortical brain organoid with vascularization by assembling with vascular spheroid. Int J Stem Cells. 2022;15(1):85–94. 10.15283/ijsc21157 PubMed DOI PMC

Matsui TK, Tsuru Y, Hasegawa K, Kuwako K. Vascularization of human brain organoids. Stem Cells. 2021;39(8):1017–1024. PubMed

Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch‐Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA. 2015;112(51):15672–15677. 10.1073/pnas.1520760112 PubMed DOI PMC

Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long‐term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc. 2021;16(2):579–602. PubMed PMC

Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019;25(4):558–569.e7. PubMed PMC

Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545(7652):48–53. PubMed PMC

Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22(4):669–679. PubMed PMC

Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26(5):766–781.e9. PubMed PMC

Nieto‐Estévez V, Hsieh J. Human brain organoid models of developmental epilepsies. Epilepsy Curr. 2020;20(5):282–290. 10.1177/1535759720949254 PubMed DOI PMC

Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng. 2019;13(1):14. 10.1186/s13036-019-0144-9 PubMed DOI PMC

Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L. Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res Cardiol. 2017;112(6):68. 10.1007/s00395-017-0655-9 PubMed DOI

Colarusso JL, Zhou Q. Direct reprogramming of different cell lineages into pancreatic β‐like cells. Cell Reprogram. 2022;24(5):252–258. 10.1089/cell.2022.0048 PubMed DOI PMC

Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011;9(2):113–118. PubMed PMC

Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476(7359):224–227. PubMed

Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA. 2011;108(25):10343–10348. 10.1073/pnas.1105135108 PubMed DOI PMC

Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9(3):205–218. PubMed PMC

Ring KL, Tong LM, Balestra ME, Javier R, Andrews‐Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11(1):100–109. 10.1016/j.stem.2012.05.018 PubMed DOI PMC

Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, et al. Generation of integration‐free neural progenitor cells from cells in human urine. Nat Methods. 2013;10(1):84–89. PubMed

Connor B, Connor B, Firmin E, Maucksch C, Liu R, Playne R, et al. Direct conversion of adult human fibroblasts into induced neural precursor cells by non‐viral transfection. Protoc Exch. 2015;1–22. 10.1038/protex.2015.034 DOI

Quist E, Trovato F, Avaliani N, Zetterdahl OG, Gonzalez‐Ramos A, Hansen MG, et al. Transcription factor‐based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Reports. 2022;17(7):1620–1635. 10.1016/j.stemcr.2022.05.015 PubMed DOI PMC

Yang J, Cao H, Guo S, Zhu H, Tao H, Zhang L, et al. Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep. 2020;22(6):4763–4771. 10.3892/mmr.2020.11559 PubMed DOI PMC

Connor B, Firmin E, McCaughey‐Chapman A, Monk R, Lee K, Liot S, et al. Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Heliyon. 2018;4(11):e00918. 10.1016/j.heliyon.2018.e00918 PubMed DOI PMC

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al. MicroRNA‐mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–231. PubMed PMC

Shi Z, Zhang J, Chen S, Li Y, Lei X, Qiao H, et al. Conversion of fibroblasts to Parvalbumin neurons by one transcription factor, Ascl1, and the chemical compound Forskolin. J Biol Chem. 2016;291(26):13560–13570. PubMed PMC

Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, et al. Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep. 2017;20(13):3236–3247. PubMed PMC

Lentini C, D'Orange M, Marichal N, Trottmann M‐M, Vignoles R, Foucault L, et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell. 2021;28(12):2104–2121.e10. PubMed PMC

Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging‐associated transcriptomic signatures and reveal age‐related nucleocytoplasmic defects. Cell Stem Cell. 2015;17(6):705–718. PubMed PMC

Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, et al. Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts. elife. 2016;5:e18648. PubMed PMC

Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age‐associated disease phenotypes. Nat Neurosci. 2018;21(3):341–352. PubMed PMC

Wang Q, Mou X, Cao H, Meng Q, Ma Y, Han P, et al. A novel xeno‐free and feeder‐cell‐free system for human pluripotent stem cell culture. Protein Cell. 2012;3(1):51–59. PubMed PMC

Reid A, Tursun B. Transdifferentiation: do transition states lie on the path of development? Curr Opin Syst Biol. 2018;11:18–23. PubMed PMC

Krsek P, Jahodova A, Kyncl M, Kudr M, Komarek V, Jezdik P, et al. Predictors of seizure‐free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia. 2013;54(11):1913–1921. 10.1111/epi.12371 PubMed DOI

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–1077. 10.1111/j.1528-1167.2009.02397.x PubMed DOI

Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann T‐N, et al. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain. 2005;128(10):2396–2407. PubMed

Chen H, Modur PN, Barot N, Van Ness PC, Agostini MA, Ding K, et al. Predictors of postoperative seizure recurrence: a longitudinal study of temporal and extratemporal resections. Epilepsy Res Treat. 2016;2016:1–7. PubMed PMC

Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–1656. 10.1056/NEJMoa1703784 PubMed DOI

Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83(6):1133–1146. 10.1002/ana.25243 PubMed DOI PMC

Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, et al. Detection of brain somatic variation in epilepsy‐associated developmental lesions. Epilepsia. 2022;63(8):1981–1997. 10.1111/epi.17323 PubMed DOI

Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, et al. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain. 2022;145(8):2704–2720. PubMed PMC

Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes‐Cendes I, Palmini A, et al. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2022;63(8):1899–1919. 10.1111/epi.17301 PubMed DOI PMC

Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, Sulc J, et al. Profiling PI3K‐AKT‐MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain. 2022;145(3):925–938. PubMed PMC

Hu MHY, Frimat J‐P, Rijkers K, Schijns OEMG, van den Maagdenberg AMJM, Dings JTA, et al. Spontaneous epileptic recordings from hiPSC‐derived cortical neurons cultured with a human epileptic brain biopsy on a multi electrode array. Appl Sci. 2023;13(3):1432.

Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CK, et al. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK 1‐WG 4 group of the ILAE/AES joint translational task force. Epilepsia Open. 2018;3(4):460–473. 10.1002/epi4.12277 PubMed DOI PMC

Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, et al. Paroxysmal discharges in tissue slices from pediatric epilepsy surgery patients: critical role of GABAB receptors in the generation of ictal activity. Front Cell Neurosci. 2020;14:54. 10.3389/fncel.2020.00054 PubMed DOI PMC

Hernandez‐Ronquillo L, Miranzadeh Mahabadi H, Moien‐Afshari F, Wu A, Auer R, Zherebitskiy V, et al. The concept of an epilepsy brain bank. Front Neurol. 2020;11:553157. 10.3389/fneur.2020.00833 PubMed DOI PMC

Chen W, Liu J, Zhang L, Xu H, Guo X, Deng S, et al. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci Rep. 2014;4(1):5404. PubMed PMC

Fernández‐Marmiesse A, Roca I, Díaz‐Flores F, Cantarín V, Pérez‐Poyato MS, Fontalba A, et al. Rare variants in 48 genes account for 42% of cases of epilepsy with or without neurodevelopmental delay in 246 pediatric patients. Front Neurosci. 2019;13:1135. 10.3389/fnins.2019.01135 PubMed DOI PMC

Zhang J, Kim EC, Chen C, Procko E, Pant S, Lam K, et al. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep. 2020;10(1):4756. PubMed PMC

Ooi A, Wong A, Esau L, Lemtiri‐Chlieh F, Gehring C. A guide to transient expression of membrane proteins in HEK‐293 cells for functional characterization. Front Physiol. 2016;7:203759. 10.3389/fphys.2016.00300/abstract PubMed DOI PMC

Gill KP, Denham M. Optimized transgene delivery using third‐generation lentiviruses. Curr Protoc Mol Biol. 2020;133(1):e125. PubMed PMC

Coyote‐Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, et al. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun. 2021;12(1):7114. PubMed PMC

Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, et al. The structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat Commun. 2022;13(1):3760. PubMed PMC

Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy‐associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency – molecular profiling and functional rescue. Sci Rep. 2017;7(1):66. PubMed PMC

Nappi M, Barrese V, Carotenuto L, Lesca G, Labalme A, Ville D, et al. Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci USA. 2022;119(15):e2116887119. 10.1073/pnas.2116887119 PubMed DOI PMC

Qu Q, Zhang W, Wang J, Mai D, Ren S, Qu S, et al. Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis. 2022;13(12):1063. PubMed PMC

Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep. 2015;5(1):15377. PubMed PMC

Stepanenko AA, Dmitrenko VV. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress‐induced genome‐phenotype evolution. Gene. 2015;569(2):182–190. PubMed

Geng B, Choi K‐H, Wang S, Chen P, Pan X, Dong N, et al. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacol Sin. 2020;41(11):1427–1432. PubMed PMC

Zhang S, Wang J, Wang J. One‐day TALEN assembly protocol and a dual‐tagging system for genome editing. ACS Omega. 2020;5(31):19702–19714. 10.1021/acsomega.0c02396 PubMed DOI PMC

Chen Y, Cao J, Xiong M, Petersen AJ, Dong Y, Tao Y, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17(2):233–244. PubMed PMC

Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome. 2017;28(7–8):348–364. 10.1007/s00335-017-9684-9 PubMed DOI PMC

Jacobs EZ, Warrier S, Volders P‐J, D'haene E, Van Lombergen E, Vantomme L, et al. CRISPR/Cas9‐mediated genome editing in naïve human embryonic stem cells. Sci Rep. 2017;7(1):16650. PubMed PMC

Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep. 2018;14(3):323–336. 10.1007/s12015-018-9811-3 PubMed DOI

Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, et al. An epilepsy‐associated KCNT1 mutation enhances excitability of human iPSC‐derived neurons by increasing slack K Na currents. J Neurosci. 2019;39(37):7438–7449. 10.1523/JNEUROSCI.1628-18.2019 PubMed DOI PMC

Xie Y, Ng NN, Safrina OS, Ramos CM, Ess KC, Schwartz PH, et al. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis. 2020;134:104627. PubMed

Pantazis CB, Yang A, Lara E, McDonough JA, Blauwendraat C, Peng L, et al. A reference human induced pluripotent stem cell line for large‐scale collaborative studies. Cell Stem Cell. 2022;29(12):1685–1702.e22. PubMed PMC

Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125–129. PubMed

World Medical Association . World medical association declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ. 2001;79(4):373–374. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...