In vitro human cell culture models in a bench-to-bedside approach to epilepsy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GA22-28265S
Grantová Agentura České Republiky
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
343421
Grantová Agentura, Univerzita Karlova
NV19-04-00369
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
38637998
PubMed Central
PMC11145627
DOI
10.1002/epi4.12941
Knihovny.cz E-zdroje
- Klíčová slova
- drug‐resistant epilepsy, genetic testing, in vitro human cell culture, legal and ethical aspects, precision medicine,
- MeSH
- buněčné kultury * MeSH
- epilepsie * genetika terapie MeSH
- indukované pluripotentní kmenové buňky MeSH
- lidé MeSH
- neurony metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Garcia‐Rosa S, de Freitas BB, da Rocha VF, Goulart E, Silva Araujo BH. Personalized medicine using cutting edge technologies for genetic epilepsies. Curr Neuropharmacol. 2021;19(6):813–831. PubMed PMC
Wang J, Lin Z‐J, Liu L, Xu H‐Q, Shi Y‐W, Yi Y‐H, et al. Epilepsy‐associated genes. Seizure. 2017;44:11–20. PubMed
Oegema R, Barakat TS, Wilke M, Stouffs K, Amrom D, Aronica E, et al. International consensus recommendations on the diagnostic work‐up for malformations of cortical development. Nat Rev Neurol. 2020;16(11):618–635. PubMed PMC
Baldassari S, Ribierre T, Marsan E, Adle‐Biassette H, Ferrand‐Sorbets S, Bulteau C, et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 2019;138(6):885–900. 10.1007/s00401-019-02061-5 PubMed DOI PMC
Sim NS, Ko A, Kim WK, Kim SH, Kim JS, Shim K‐W, et al. Precise detection of low‐level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 2019;138(6):901–912. 10.1007/s00401-019-02052-6 PubMed DOI
Kim S, Baldassari S, Sim NS, Chipaux M, Dorfmüller G, Kim DS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients. Ann Neurol. 2021;89(6):1248–1252. 10.1002/ana.26080 PubMed DOI
Helbig I, Heinzen EL, Mefford HC. Primer part 1‐the building blocks of epilepsy genetics. Epilepsia. 2016;57(6):861–868. 10.1111/epi.13381 PubMed DOI
Helbig I, Heinzen EL, Mefford HC, International League Against Epilepsy Genetics Commission , Berkovic SF, Lowenstein DH, et al. Genetic literacy series: primer part 2‐paradigm shifts in epilepsy genetics. Epilepsia. 2018;59(6):1138–1147. 10.1111/epi.14193 PubMed DOI
Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum Mutat. 2005;25(6):535–542. 10.1002/humu.20178 PubMed DOI
Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N. Epileptic focus and alteration of metabolism. Int Rev Neurobiol. 2014;114:209–243. PubMed
Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14(9):956–966. PubMed
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun. 2021;3(4):fcab222. 10.1093/braincomms/fcab222/6375444 PubMed DOI PMC
Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, et al. Utility of genetic testing for therapeutic decision‐making in adults with epilepsy. Epilepsia. 2020;61(6):1234–1239. 10.1111/epi.16533 PubMed DOI
Campbell C, Leu C, Feng Y‐CA, Wolking S, Moreau C, Ellis C, et al. The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine. 2022;81:104098. PubMed PMC
Martins Custodio H, Clayton LM, Bellampalli R, Pagni S, Silvennoinen K, Caswell R, et al. Widespread genomic influences on phenotype in Dravet syndrome, a ‘monogenic’ condition. Brain. 2023;146(9):3885–3897. PubMed PMC
Jones RSG, da Silva AB, Whittaker RG, Woodhall GL, Cunningham MO. Human brain slices for epilepsy research: pitfalls, solutions, and future challenges. J Neurosci Methods. 2016;260:221–232. 10.1016/j.jneumeth.2015.09.021 PubMed DOI
Baumgartner C, Koren JP, Britto‐Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Research. 2019;8:1818. PubMed PMC
Simkin D, Kiskinis E. Modeling pediatric epilepsy through iPSC‐based technologies. Epilepsy Curr. 2018;18(4):240–245. 10.5698/1535-7597.18.4.240 PubMed DOI PMC
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–1041. PubMed PMC
Bocchi R, Masserdotti G, Götz M. Direct neuronal reprogramming: fast forward from new concepts toward therapeutic approaches. Neuron. 2022;110(3):366–393. PubMed
Sim NS, Seo Y, Lim JS, Kim WK, Son H, Kim HD, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N‐glycosylation. Neurol Genet. 2018;4(6):e294. PubMed PMC
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, et al. ‘Channeling’ therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci. 2022;43(5):392–405. PubMed PMC
Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhardi E‐M, et al. Plasmid‐based generation of induced neural stem cells from adult human fibroblasts. Front Cell Neurosci. 2016;10:1–12. 10.3389/fncel.2016.00245 PubMed DOI PMC
Miskinyte G, Devaraju K, Grønning Hansen M, Monni E, Tornero D, Woods NB, et al. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther. 2017;8(1):207. 10.1186/s13287-017-0658-3 PubMed DOI PMC
Kraus L, Hetsch F, Schneider UC, Radbruch H, Holtkamp M, Meier JC, et al. Dimethylethanolamine decreases epileptiform activity in acute human hippocampal slices in vitro. Front Mol Neurosci. 2019;12:209. 10.3389/fnmol.2019.00209 PubMed DOI PMC
Eugène E, Cluzeaud F, Cifuentes‐Diaz C, Fricker D, Le Duigou C, Clemenceau S, et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods. 2014;235:234–244. PubMed PMC
Wickham J, Brödjegård NG, Vighagen R, Pinborg LH, Bengzon J, Woldbye DPD, et al. Prolonged life of human acute hippocampal slices from temporal lobe epilepsy surgery. Sci Rep. 2018;8(1):4158. PubMed PMC
Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B, et al. Optogenetic control of human neurons in organotypic brain cultures. Sci Rep. 2016;6(1):24818. 10.1038/srep24818 PubMed DOI PMC
James AM, Wei Y‐H, Pang C‐Y, Murphy MP. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J. 1996;318(2):401–407. PubMed PMC
De la Mata M, Garrido‐Maraver J, Cotán D, Cordero MD, Oropesa‐Ávila M, Izquierdo LG, et al. Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics. 2012;9(2):446–463. 10.1007/s13311-012-0103-3 PubMed DOI PMC
Cotán D, Cordero MD, Garrido‐Maraver J, Oropesa‐Avila M, Rodríguez‐Hernández Á, Izquierdo LG, et al. Secondary coenzyme Q 10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J. 2011;25(8):2669–2687. 10.1096/fj.10-165340 PubMed DOI
Hengel H, Bosso‐Lefèvre C, Grady G, Szenker‐Ravi E, Li H, Pierce S, et al. Loss‐of‐function mutations in UDP‐glucose 6‐dehydrogenase cause recessive developmental epileptic encephalopathy. Nat Commun. 2020;11(1):595. PubMed PMC
Kahn‐Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, et al. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease‐related epilepsy. PLoS One. 2019;14(3):e0214250. 10.1371/journal.pone.0214250 PubMed DOI PMC
Reinert M‐C, Pacheu‐Grau D, Catarino CB, Klopstock T, Ohlenbusch A, Schittkowski M, et al. Sulthiame impairs mitochondrial function in vitro and may trigger the onset of visual loss in Leber hereditary optic neuropathy. Orphanet J Rare Dis. 2021;16(1):64. 10.1186/s13023-021-01690-y PubMed DOI PMC
Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, et al. TSC patient‐derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin‐induced MNK‐eIF4E signaling. Mol Autism. 2020;11(1):2. 10.1186/s13229-019-0311-3 PubMed DOI PMC
Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, et al. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC‐derived GABAergic neurons. Hum Mol Genet. 2021;30(14):1337–1348. PubMed
Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci USA. 2016;113(3):751–756. 10.1073/pnas.1524013113 PubMed DOI PMC
Meijer M, Rehbach K, Brunner JW, Classen JA, Lammertse HCA, van Linge LA, et al. A single‐cell model for synaptic transmission and plasticity in human iPSC‐derived neurons. Cell Rep. 2019;27(7):2199–2211.e6. PubMed
Brant B, Stern T, Shekhidem HA, Mizrahi L, Rosh I, Stern Y, et al. IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient‐derived neurons and deficient synaptic transmission. Mol Psychiatry. 2021;26(12):7498–7508. PubMed PMC
Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen P‐F, et al. Biallelic mutations in TSC2 Lead to abnormalities associated with cortical tubers in human iPSC‐derived neurons. J Neurosci. 2019;39(47):9294–9305. 10.1523/JNEUROSCI.0642-19.2019 PubMed DOI PMC
Shahsavani M, Pronk RJ, Falk R, Lam M, Moslem M, Linker SB, et al. An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry. 2018;23:1674–1684. 10.1038/mp.2017.175 PubMed DOI
Tidball AM, Lopez‐Santiago LF, Yuan Y, Glenn TW, Margolis JL, Clayton Walker J, et al. Variant‐specific changes in persistent or resurgent sodium current in SCN8A‐related epilepsy patient‐derived neurons. Brain. 2020;143(10):3025–3040. PubMed PMC
van Hugte EJH, Lewerissa EI, Wu KM, Scheefhals N, Parodi G, van Voorst TW, et al. SCN1A‐deficient excitatory neuronal networks display mutation‐specific phenotypes. Brain. 2023;146(12):5153–5167. PubMed PMC
Jiao J, Yang Y, Shi Y, Chen J, Gao R, Fan Y, et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet. 2013;22(21):4241–4252. 10.1093/hmg/ddt275 PubMed DOI
Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5:e13073. PubMed PMC
Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen‐Steijger P, van Hugte E, Dooves S, et al. Neuron‐glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC‐derived models. Stem Cell Reports. 2019;12(1):42–56. PubMed PMC
Marinowic DR, Majolo F, Zanirati GG, Plentz I, Neto EP, Palmini ALF, et al. Analysis of genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in induced pluripotent stem cells (iPSCs) from patients with focal cortical dysplasia. Brain Res Bull. 2020;155:112–118. PubMed
Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, et al. 16pdel lipid changes in iPSC‐derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience. 2022;25(1):103551. PubMed PMC
Liu Y, Lopez‐Santiago LF, Yuan Y, Jones JM, Zhang H, O'Malley HA, et al. Dravet syndrome patient‐derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 2013;74(1):128–139. 10.1002/ana.23897 PubMed DOI PMC
Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM 1 epilepsy. EMBO Mol Med. 2020;12(6):e11419. 10.15252/emmm.201911419 PubMed DOI PMC
Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci. 2021;24(10):1488–1500. PubMed PMC
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, et al. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med. 2021;13(8):e13610. 10.15252/emmm.202013610 PubMed DOI PMC
Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron–glia interactions in tuberous sclerosis complex affect the synaptic balance in 2D and organoid cultures. Cells. 2021;10(1):134. PubMed PMC
Avansini SH, Puppo F, Adams JW, Vieira AS, Coan AC, Rogerio F, et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain. 2022;145(6):1962–1977. PubMed PMC
Wu W, Yao H, Negraes PD, Wang J, Trujillo CA, de Souza JS, et al. Neuronal hyperexcitability and ion channel dysfunction in CDKL5‐deficiency patient iPSC‐derived cortical organoids. Neurobiol Dis. 2022;174:105882. PubMed
Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber V‐E, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375(6579):eabf5546. 10.1126/science.abf5546 PubMed DOI PMC
Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, et al. MeCP2‐regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 2018;23(4):1051–1065. PubMed PMC
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw‐Boris A, et al. Human iPSC‐derived cerebral organoids model cellular features of Lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20(4):435–449.e4. PubMed PMC
Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, et al. An organoid‐based model of cortical development identifies non‐cell‐autonomous defects in Wnt signaling contributing to Miller‐Dieker syndrome. Cell Rep. 2017;19(1):50–59. PubMed
Zayat V, Kuczynska Z, Liput M, Metin E, Rzonca‐Niewczas S, Smyk M, et al. The generation of human iPSC lines from three individuals with Dravet syndrome and characterization of neural differentiation markers in iPSC‐derived ventral forebrain organoid model. Cells. 2023;12(2):339. PubMed PMC
Dang LT, Glanowska KM, Iffland PH II, Barnes AE, Baybis M, Liu Y, et al. Multimodal analysis of STRADA function in brain development. Front Cell Neurosci. 2020;14:122. 10.3389/fncel.2020.00122 PubMed DOI PMC
Villanueva‐Paz M, Povea‐Cabello S, Villalón‐García I, Suárez‐Rivero JM, Álvarez‐Córdoba M, de la Mata M, et al. Pathophysiological characterization of MERRF patient‐specific induced neurons generated by direct reprogramming. Biochim Biophys Acta, Mol Cell Res. 2019;1866(5):861–881. 10.1016/j.bbamcr.2019.02.010 PubMed DOI
Villanueva‐Paz M, Povea‐Cabello S, Villalón‐García I, Álvarez‐Córdoba M, Suárez‐Rivero JM, Talaverón‐Rey M, et al. Parkin‐mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165726. 10.1016/j.bbadis.2020.165726 PubMed DOI
Kano S, Yuan M, Cardarelli RA, Maegawa G, Higurashi N, Gaval‐Cruz M, et al. Clinical utility of neuronal cells directly converted from fibroblasts of patients for neuropsychiatric disorders: studies of lysosomal storage diseases and channelopathy. Curr Mol Med. 2015;15(2):138–145. PubMed PMC
Oby E, Caccia S, Vezzani A, Moeddel G, Hallene K, Guiso G, et al. In vitro responsiveness of human‐drug‐resistant tissue to antiepileptic drugs: insights into the mechanisms of pharmacoresistance. Brain Res. 2006;1086(1):201–213. PubMed
Witkin JM, Schober DA, Gleason SD, Catlow JT, Porter WJ, Reel J, et al. Targeted blockade of TARP‐γ8‐associated AMPA receptors: anticonvulsant activity with the selective antagonist LY3130481 (CERC‐611). CNS Neurol Disord Drug Targets. 2018;16(10):1099–1110. PubMed
Lie AA, Blümcke I, Volsen SG, Wiestler OD, Elger CE, Beck H. Distribution of voltage‐dependent calcium channel beta subunits in the hippocampus of patients with temporal lobe epilepsy. Neuroscience. 1999;93(2):449–456. PubMed
Møller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V, Bebin EM, et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2016;2(6):e118. 10.1212/NXG.0000000000000118 PubMed DOI PMC
Marinowic DR, Majolo F, Sebben AD, Da Silva VD, Lopes TG, Paglioli E, et al. Induced pluripotent stem cells from patients with focal cortical dysplasia and refractory epilepsy. Mol Med Rep. 2017;15(4):2049–2056. 10.3892/mmr.2017.6264 PubMed DOI PMC
Garcia CAB, Carvalho SCS, Yang X, Ball LL, George RD, James KN, et al. mTOR pathway somatic variants and the molecular pathogenesis of hemimegalencephaly. Epilepsia Open. 2020;5(1):97–106. 10.1002/epi4.12377 PubMed DOI PMC
Vantroys E, Larson A, Friederich M, Knight K, Swanson MA, Powell CA, et al. New insights into the phenotype of FARS2 deficiency. Mol Genet Metab. 2017;122(4):172–181. PubMed PMC
Cepeda C, André VM, Hauptman JS, Yamazaki I, Huynh MN, Chang JW, et al. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia type IIB compared with tuberous sclerosis complex. Neurobiol Dis. 2012;45(1):310–321. PubMed PMC
Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang S‐C. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8(9):1670–1679. PubMed PMC
Nakayama T, Ishii A, Yoshida T, Nasu H, Shimojima K, Yamamoto T, et al. Somatic mosaic deletions involving SCN1A cause Dravet syndrome. Am J Med Genet A. 2018;176(3):657–662. 10.1002/ajmg.a.38596 PubMed DOI
Haanpää MK, Ng BG, Gallant NM, Singh KE, Brown C, Kimonis V, et al. ALG11‐CDG syndrome: expanding the phenotype. Am J Med Genet A. 2019;179(3):498–502. 10.1002/ajmg.a.61046 PubMed DOI PMC
Chen G, Zhou H, Lu Y, Wang Y, Li Y, Xue J, et al. Case report: a novel mosaic nonsense mutation of PCDH19 in a Chinese male with febrile epilepsy. Front Neurol. 2022;13:992781. PubMed PMC
Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol. 2016;7(4):210–219. PubMed PMC
Kluckova D, Kolnikova M, Lacinova L, Jurkovicova‐Tarabova B, Foltan T, Demko V, et al. A study among the genotype, functional alternations, and phenotype of 9 SCN1A mutations in epilepsy patients. Sci Rep. 2020;10(1):10288. PubMed PMC
Blazekovic A, Gotovac Jercic K, Meglaj S, Duranovic V, Prpic I, Lozic B, et al. Genetics of pediatric epilepsy: next‐generation sequencing in clinical practice. Genes (Basel). 2022;13(8):1466. PubMed PMC
McKnight D, Bristow SL, Truty RM, Morales A, Stetler M, Westbrook MJ, et al. Multigene panel testing in a large cohort of adults with epilepsy: diagnostic yield and clinically actionable genetic findings. Neurol Genet. 2022;8(1):e650. PubMed PMC
Rawat C, Kushwaha S, Srivastava AK, Kukreti R. Peripheral blood gene expression signatures associated with epilepsy and its etiologic classification. Genomics. 2020;112(1):218–224. PubMed
Zech M, Kopajtich R, Steinbrücker K, Bris C, Gueguen N, Feichtinger RG, et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol. 2022;91(2):225–237. 10.1002/ana.26293 PubMed DOI PMC
Handoko M, Emrick LT, Rosenfeld JA, Wang X, Tran AA, Turner A, et al. Recurrent mosaic MTOR c.5930C > T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: case report and review of the literature. Am J Med Genet A. 2019;179(3):475–479. 10.1002/ajmg.a.61007 PubMed DOI
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct neuronal reprogramming: bridging the gap between basic science and clinical application. Front Cell Dev Biol. 2021;9:681087. 10.3389/fcell.2021.681087 PubMed DOI PMC
Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(3):261–268. 10.1002/ajmg.b.30272 PubMed DOI
Kim Y, Zheng X, Ansari Z, Bunnell MC, Herdy JR, Traxler L, et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 2018;23(9):2550–2558. PubMed PMC
Moudy AM, Handran SD, Goldberg MP, Ruffin N, Karl I, Kranz‐Eble P, et al. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci. 1995;92(3):729–733. 10.1073/pnas.92.3.729 PubMed DOI PMC
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. PubMed
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. PubMed
Yu J, Vodyanik MA, Smuga‐Otto K, Antosiewicz‐Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. 10.1126/science.1151526 PubMed DOI
Park I‐H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease‐specific induced pluripotent stem cells. Cell. 2008;134(5):877–886. PubMed PMC
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–953. 10.1126/science.1164270 PubMed DOI
Ghosh D, Mehta N, Patil A, Sengupta J. Ethical issues in biomedical use of human embryonic stem cells (hESCs). J Reprod Heal Med. 2016;2:S37–S47.
Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int. 2014;2014:1–12. PubMed PMC
Streckfuss‐Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human‐induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2013;34(33):2618–2629. 10.1093/eurheartj/ehs203 PubMed DOI
Mack AA, Kroboth S, Rajesh D, Wang WB. Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non‐integrating Episomal vectors. PLoS One. 2011;6(11):e27956. 10.1371/journal.pone.0027956 PubMed DOI PMC
Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc. 2012;7(4):718–728. PubMed
Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, Kutalkova K, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells. Stem Cells Dev. 2018;27(1):10–22. 10.1089/scd.2017.0132 PubMed DOI PMC
Raska J, Klimova H, Sheardova K, Fedorova V, Hribkova H, Pospisilova V, et al. Generation of three human iPSC lines from patients with a spontaneous late‐onset Alzheimer's disease and three sex‐ and age‐matched healthy controls. Stem Cell Res. 2021;53:102378. PubMed
Kim Y, Rim YA, Yi H, Park N, Park S‐H, Ju JH. The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation. Stem Cells Int. 2016;2016:1–9. PubMed PMC
Vlahos K, Sourris K, Mayberry R, McDonald P, Bruveris FF, Schiesser JV, et al. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res. 2019;34:101380. PubMed
Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, et al. Generating a non‐integrating human induced pluripotent stem cell Bank from urine‐derived cells. PLoS One. 2013;8(8):e70573. 10.1371/journal.pone.0070573 PubMed DOI PMC
Shi T, Cheung M. Urine‐derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci. 2021;11(1):85. 10.1186/s13578-021-00594-5 PubMed DOI PMC
Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single Lentiviral stem cell cassette. Stem Cells. 2009;27(3):543–549. PubMed PMC
Yu J, Hu K, Smuga‐Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. 10.1126/science.1172482 PubMed DOI PMC
Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, et al. Improved Sendai viral system for reprogramming to naive pluripotency. Cell Rep Methods. 2022;2(11):100317. PubMed PMC
Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394(1):189–193. PubMed
Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc. 2013;8(3):568–582. PubMed
Anokye‐Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA‐mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–388. PubMed PMC
Min L, Yin Y, Zhao Q, Wang S. Establishment of a human iPSC line (SUTCMi001‐a) derived from a healthy donor. Stem Cell Res. 2022;63:102849. PubMed
Nelakanti RV, Kooreman NG, Wu JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. Curr Protoc Stem Cell Biol. 2015;32(1):4A.8.1–4A.8.17. 10.1002/9780470151808.sc04a08s32 PubMed DOI PMC
Buta C, David R, Dressel R, Emgård M, Fuchs C, Gross U, et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res. 2013;11(1):552–562. PubMed PMC
Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity risk of iPSCs in vivo: nip it in the bud. Precis Clin Med. 2022;5(1):1–11. 10.1093/pcmedi/pbac004/6521459 PubMed DOI PMC
Benchoua A, Lasbareilles M, Tournois J. Contribution of human pluripotent stem cell‐based models to drug discovery for neurological disorders. Cells. 2021;10(12):3290. PubMed PMC
Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220–223. PubMed PMC
Maeda H, Chiyonobu T, Yoshida M, Yamashita S, Zuiki M, Kidowaki S, et al. Establishment of isogenic iPSCs from an individual with SCN1A mutation mosaicism as a model for investigating neurocognitive impairment in Dravet syndrome. J Hum Genet. 2016;61(6):565–569. PubMed
Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, et al. Need for high‐resolution genetic analysis in iPSC: results and lessons from the ForIPS consortium. Sci Rep. 2018;8(1):17201. PubMed PMC
Tidball AM, Parent JM. Concise review: exciting cells: modeling genetic epilepsies with patient‐derived induced pluripotent stem cells. Stem Cells. 2016;34(1):27–33. PubMed PMC
McKinney C. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen Res. 2017;12(7):1062. PubMed PMC
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, et al. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci. 2020;108:103535. PubMed
Lybrand ZR, Goswami S, Hsieh J. Stem cells: a path toward improved epilepsy therapies. Neuropharmacology. 2020;168:107781. PubMed PMC
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn. 2020;249(1):56–75. 10.1002/dvdy.79 PubMed DOI
Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int J Mol Sci. 2020;21(2):482. PubMed PMC
Javaid MS, Tan T, Dvir N, Anderson A, O'Brien TJ, Kwan P, et al. Human in vitro models of epilepsy using embryonic and induced pluripotent stem cells. Cells. 2022;11(24):3957. PubMed PMC
Gong X, Zheng Z, Yang T, Zheng H, Xiao X, Jia N. Generation of an isogenic gene‐corrected iPSC line (OGHFUi001‐A‐1) from a type 1 early infantile epileptic encephalopathy (EIEE1) patient with a hemizygous R330L mutation in the ARX gene. Stem Cell Res. 2022;60:102693. PubMed
Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255. 10.1371/journal.pone.0025255 PubMed DOI PMC
Tanaka Y, Sone T, Higurashi N, Sakuma T, Suzuki S, Ishikawa M, et al. Generation of D1‐1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using TALEN‐mediated editing of the SCN1A gene. Stem Cell Res. 2018;28:100–104. PubMed
Zeng H, Guo M, Martins‐Taylor K, Wang X, Zhang Z, Park JW, et al. Specification of region‐specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 2010;5(7):e11853. 10.1371/journal.pone.0011853 PubMed DOI PMC
Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 2005;23(6):781–790. PubMed PMC
Hu B‐Y, Zhang S‐C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc. 2009;4(9):1295–1304. PubMed PMC
Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, et al. Directed differentiation of human‐induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27(4):806–811. PubMed PMC
Krencik R, Weick JP, Liu Y, Zhang Z‐J, Zhang S‐C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29(6):528–534. PubMed PMC
Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 2013;31(5):941–952. PubMed
Pistollato F, Canovas‐Jorda D, Zagoura D, Price A. Protocol for the differentiation of human induced pluripotent stem cells into mixed cultures of neurons and glia for neurotoxicity testing. J Vis Exp. 2017;124:e55702. PubMed PMC
Lopez‐Lengowski K, Kathuria A, Gerlovin K, Karmacharya R. Co‐culturing microglia and cortical neurons differentiated from human induced pluripotent stem cells. J Vis Exp. 2021;175:e62480. PubMed PMC
Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient‐specific iPSCs. Nature. 2009;461(7262):402–406. PubMed PMC
Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–539. PubMed PMC
Wattanapanitch M, Klincumhom N, Potirat P, Amornpisutt R, Lorthongpanich C, U‐pratya Y, et al. Dual small‐molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages. PLoS One. 2014;9(9):e106952. 10.1371/journal.pone.0106952 PubMed DOI PMC
Qi Y, Zhang X‐J, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small‐molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35(2):154–163. PubMed PMC
Autar K, Guo X, Rumsey JW, Long CJ, Akanda N, Jackson M, et al. A functional hiPSC‐cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Reports. 2022;17(1):96–109. PubMed PMC
Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single‐step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–798. PubMed PMC
Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME. Transcription factor‐mediated differentiation of human iPSCs into neurons. Curr Protoc Cell Biol. 2018;79(1):e51. PubMed PMC
Ryan SK, Jordan‐Sciutto KL, Anderson SA. Protocol for tri‐culture of hiPSC‐derived neurons, astrocytes, and microglia. STAR Protoc. 2020;1(3):100190. PubMed PMC
D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, et al. Large‐scale generation of human iPSC‐derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis. 2014;10(4):365–377. 10.1080/15476278.2015.1011921 PubMed DOI PMC
Thodeson DM, Brulet R, Hsieh J. Neural stem cells and epilepsy: functional roles and disease‐in‐a‐dish models. Cell Tissue Res. 2018;371(1):47–54. 10.1007/s00441-017-2675-z PubMed DOI
Galiakberova AA, Dashinimaev EB. Neural stem cells and methods for their generation from induced pluripotent stem cells in vitro. Front Cell Dev Biol. 2020;8:815. 10.3389/fcell.2020.00815 PubMed DOI PMC
Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836–1846. PubMed
Gunhanlar N, Shpak G, van der Kroeg M, Gouty‐Colomer LA, Munshi ST, Lendemeijer B, et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol Psychiatry. 2018;23(5):1336–1344. PubMed PMC
Yokoi R, Shigemoto‐Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC‐derived cortical neural networks. J Pharmacol Sci. 2022;148(2):267–278. PubMed
Peitz M, Krutenko T, Brüstle O. Protocol for the standardized generation of forward programmed cryopreservable excitatory and inhibitory forebrain neurons. STAR Protoc. 2020;1(1):100038. PubMed PMC
Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports. 2014;2(3):295–310. 10.1016/j.stemcr.2014.01.009 PubMed DOI PMC
Sarkar A, Mei A, Paquola ACM, Stern S, Bardy C, Klug JR, et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell. 2018;22(5):684–697.e9. PubMed PMC
Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos‐Fogelquist S, Mendes APD, et al. Differentiation of inflammation‐responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Reports. 2017;8(6):1757–1769. PubMed PMC
Voulgaris D, Nikolakopoulou P, Herland A. Generation of human iPSC‐derived astrocytes with a mature star‐shaped phenotype for CNS modeling. Stem Cell Rev Rep. 2022;18(7):2494–2512. 10.1007/s12015-022-10376-2 PubMed DOI PMC
Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L. Electrical responses and spontaneous activity of human iPS‐derived neuronal networks characterized for 3‐month culture with 4096‐electrode arrays. Front Neurosci. 2016;10:121. 10.3389/fnins.2016.00121 PubMed DOI PMC
Lancaster MA, Renner M, Martin C‐A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–379. PubMed PMC
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain‐region‐specific organoids using mini‐bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–1254. PubMed PMC
Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self‐organizing human embryonic stem cell‐derived dorsomedial telencephalic tissue. Nat Commun. 2015;6(1):8896. PubMed PMC
Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran H‐D, Göke J, et al. Midbrain‐like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin‐producing neurons. Cell Stem Cell. 2016;19(2):248–257. PubMed PMC
Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–678. PubMed PMC
Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self‐organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10(4):537–550. PubMed
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–2340. 10.1038/nprot.2014.158 PubMed DOI PMC
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang Y‐J, et al. Engineering of human brain organoids with a functional vascular‐like system. Nat Methods. 2019;16(11):1169–1175. PubMed PMC
Kook MG, Lee S‐E, Shin N, Kong D, Kim D‐H, Kim M‐S, et al. Generation of cortical brain organoid with vascularization by assembling with vascular spheroid. Int J Stem Cells. 2022;15(1):85–94. 10.15283/ijsc21157 PubMed DOI PMC
Matsui TK, Tsuru Y, Hasegawa K, Kuwako K. Vascularization of human brain organoids. Stem Cells. 2021;39(8):1017–1024. PubMed
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch‐Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA. 2015;112(51):15672–15677. 10.1073/pnas.1520760112 PubMed DOI PMC
Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long‐term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc. 2021;16(2):579–602. PubMed PMC
Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019;25(4):558–569.e7. PubMed PMC
Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545(7652):48–53. PubMed PMC
Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22(4):669–679. PubMed PMC
Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26(5):766–781.e9. PubMed PMC
Nieto‐Estévez V, Hsieh J. Human brain organoid models of developmental epilepsies. Epilepsy Curr. 2020;20(5):282–290. 10.1177/1535759720949254 PubMed DOI PMC
Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng. 2019;13(1):14. 10.1186/s13036-019-0144-9 PubMed DOI PMC
Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L. Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res Cardiol. 2017;112(6):68. 10.1007/s00395-017-0655-9 PubMed DOI
Colarusso JL, Zhou Q. Direct reprogramming of different cell lineages into pancreatic β‐like cells. Cell Reprogram. 2022;24(5):252–258. 10.1089/cell.2022.0048 PubMed DOI PMC
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011;9(2):113–118. PubMed PMC
Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476(7359):224–227. PubMed
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA. 2011;108(25):10343–10348. 10.1073/pnas.1105135108 PubMed DOI PMC
Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9(3):205–218. PubMed PMC
Ring KL, Tong LM, Balestra ME, Javier R, Andrews‐Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11(1):100–109. 10.1016/j.stem.2012.05.018 PubMed DOI PMC
Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, et al. Generation of integration‐free neural progenitor cells from cells in human urine. Nat Methods. 2013;10(1):84–89. PubMed
Connor B, Connor B, Firmin E, Maucksch C, Liu R, Playne R, et al. Direct conversion of adult human fibroblasts into induced neural precursor cells by non‐viral transfection. Protoc Exch. 2015;1–22. 10.1038/protex.2015.034 DOI
Quist E, Trovato F, Avaliani N, Zetterdahl OG, Gonzalez‐Ramos A, Hansen MG, et al. Transcription factor‐based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Reports. 2022;17(7):1620–1635. 10.1016/j.stemcr.2022.05.015 PubMed DOI PMC
Yang J, Cao H, Guo S, Zhu H, Tao H, Zhang L, et al. Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep. 2020;22(6):4763–4771. 10.3892/mmr.2020.11559 PubMed DOI PMC
Connor B, Firmin E, McCaughey‐Chapman A, Monk R, Lee K, Liot S, et al. Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Heliyon. 2018;4(11):e00918. 10.1016/j.heliyon.2018.e00918 PubMed DOI PMC
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al. MicroRNA‐mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–231. PubMed PMC
Shi Z, Zhang J, Chen S, Li Y, Lei X, Qiao H, et al. Conversion of fibroblasts to Parvalbumin neurons by one transcription factor, Ascl1, and the chemical compound Forskolin. J Biol Chem. 2016;291(26):13560–13570. PubMed PMC
Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, et al. Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep. 2017;20(13):3236–3247. PubMed PMC
Lentini C, D'Orange M, Marichal N, Trottmann M‐M, Vignoles R, Foucault L, et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell. 2021;28(12):2104–2121.e10. PubMed PMC
Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging‐associated transcriptomic signatures and reveal age‐related nucleocytoplasmic defects. Cell Stem Cell. 2015;17(6):705–718. PubMed PMC
Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, et al. Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts. elife. 2016;5:e18648. PubMed PMC
Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age‐associated disease phenotypes. Nat Neurosci. 2018;21(3):341–352. PubMed PMC
Wang Q, Mou X, Cao H, Meng Q, Ma Y, Han P, et al. A novel xeno‐free and feeder‐cell‐free system for human pluripotent stem cell culture. Protein Cell. 2012;3(1):51–59. PubMed PMC
Reid A, Tursun B. Transdifferentiation: do transition states lie on the path of development? Curr Opin Syst Biol. 2018;11:18–23. PubMed PMC
Krsek P, Jahodova A, Kyncl M, Kudr M, Komarek V, Jezdik P, et al. Predictors of seizure‐free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia. 2013;54(11):1913–1921. 10.1111/epi.12371 PubMed DOI
Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–1077. 10.1111/j.1528-1167.2009.02397.x PubMed DOI
Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann T‐N, et al. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain. 2005;128(10):2396–2407. PubMed
Chen H, Modur PN, Barot N, Van Ness PC, Agostini MA, Ding K, et al. Predictors of postoperative seizure recurrence: a longitudinal study of temporal and extratemporal resections. Epilepsy Res Treat. 2016;2016:1–7. PubMed PMC
Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–1656. 10.1056/NEJMoa1703784 PubMed DOI
Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83(6):1133–1146. 10.1002/ana.25243 PubMed DOI PMC
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, et al. Detection of brain somatic variation in epilepsy‐associated developmental lesions. Epilepsia. 2022;63(8):1981–1997. 10.1111/epi.17323 PubMed DOI
Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, et al. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain. 2022;145(8):2704–2720. PubMed PMC
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes‐Cendes I, Palmini A, et al. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2022;63(8):1899–1919. 10.1111/epi.17301 PubMed DOI PMC
Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, Sulc J, et al. Profiling PI3K‐AKT‐MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain. 2022;145(3):925–938. PubMed PMC
Hu MHY, Frimat J‐P, Rijkers K, Schijns OEMG, van den Maagdenberg AMJM, Dings JTA, et al. Spontaneous epileptic recordings from hiPSC‐derived cortical neurons cultured with a human epileptic brain biopsy on a multi electrode array. Appl Sci. 2023;13(3):1432.
Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CK, et al. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK 1‐WG 4 group of the ILAE/AES joint translational task force. Epilepsia Open. 2018;3(4):460–473. 10.1002/epi4.12277 PubMed DOI PMC
Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, et al. Paroxysmal discharges in tissue slices from pediatric epilepsy surgery patients: critical role of GABAB receptors in the generation of ictal activity. Front Cell Neurosci. 2020;14:54. 10.3389/fncel.2020.00054 PubMed DOI PMC
Hernandez‐Ronquillo L, Miranzadeh Mahabadi H, Moien‐Afshari F, Wu A, Auer R, Zherebitskiy V, et al. The concept of an epilepsy brain bank. Front Neurol. 2020;11:553157. 10.3389/fneur.2020.00833 PubMed DOI PMC
Chen W, Liu J, Zhang L, Xu H, Guo X, Deng S, et al. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci Rep. 2014;4(1):5404. PubMed PMC
Fernández‐Marmiesse A, Roca I, Díaz‐Flores F, Cantarín V, Pérez‐Poyato MS, Fontalba A, et al. Rare variants in 48 genes account for 42% of cases of epilepsy with or without neurodevelopmental delay in 246 pediatric patients. Front Neurosci. 2019;13:1135. 10.3389/fnins.2019.01135 PubMed DOI PMC
Zhang J, Kim EC, Chen C, Procko E, Pant S, Lam K, et al. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep. 2020;10(1):4756. PubMed PMC
Ooi A, Wong A, Esau L, Lemtiri‐Chlieh F, Gehring C. A guide to transient expression of membrane proteins in HEK‐293 cells for functional characterization. Front Physiol. 2016;7:203759. 10.3389/fphys.2016.00300/abstract PubMed DOI PMC
Gill KP, Denham M. Optimized transgene delivery using third‐generation lentiviruses. Curr Protoc Mol Biol. 2020;133(1):e125. PubMed PMC
Coyote‐Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, et al. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun. 2021;12(1):7114. PubMed PMC
Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, et al. The structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat Commun. 2022;13(1):3760. PubMed PMC
Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy‐associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency – molecular profiling and functional rescue. Sci Rep. 2017;7(1):66. PubMed PMC
Nappi M, Barrese V, Carotenuto L, Lesca G, Labalme A, Ville D, et al. Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci USA. 2022;119(15):e2116887119. 10.1073/pnas.2116887119 PubMed DOI PMC
Qu Q, Zhang W, Wang J, Mai D, Ren S, Qu S, et al. Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis. 2022;13(12):1063. PubMed PMC
Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep. 2015;5(1):15377. PubMed PMC
Stepanenko AA, Dmitrenko VV. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress‐induced genome‐phenotype evolution. Gene. 2015;569(2):182–190. PubMed
Geng B, Choi K‐H, Wang S, Chen P, Pan X, Dong N, et al. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacol Sin. 2020;41(11):1427–1432. PubMed PMC
Zhang S, Wang J, Wang J. One‐day TALEN assembly protocol and a dual‐tagging system for genome editing. ACS Omega. 2020;5(31):19702–19714. 10.1021/acsomega.0c02396 PubMed DOI PMC
Chen Y, Cao J, Xiong M, Petersen AJ, Dong Y, Tao Y, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17(2):233–244. PubMed PMC
Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome. 2017;28(7–8):348–364. 10.1007/s00335-017-9684-9 PubMed DOI PMC
Jacobs EZ, Warrier S, Volders P‐J, D'haene E, Van Lombergen E, Vantomme L, et al. CRISPR/Cas9‐mediated genome editing in naïve human embryonic stem cells. Sci Rep. 2017;7(1):16650. PubMed PMC
Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep. 2018;14(3):323–336. 10.1007/s12015-018-9811-3 PubMed DOI
Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, et al. An epilepsy‐associated KCNT1 mutation enhances excitability of human iPSC‐derived neurons by increasing slack K Na currents. J Neurosci. 2019;39(37):7438–7449. 10.1523/JNEUROSCI.1628-18.2019 PubMed DOI PMC
Xie Y, Ng NN, Safrina OS, Ramos CM, Ess KC, Schwartz PH, et al. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis. 2020;134:104627. PubMed
Pantazis CB, Yang A, Lara E, McDonough JA, Blauwendraat C, Peng L, et al. A reference human induced pluripotent stem cell line for large‐scale collaborative studies. Cell Stem Cell. 2022;29(12):1685–1702.e22. PubMed PMC
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125–129. PubMed
World Medical Association . World medical association declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ. 2001;79(4):373–374. PubMed PMC