Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29117787
PubMed Central
PMC5756468
DOI
10.1089/scd.2017.0132
Knihovny.cz E-zdroje
- Klíčová slova
- endothelial differentiation, induced pluripotent stem cells, peripheral blood mononuclear cells,
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie metabolismus MeSH
- endoteliální buňky cytologie metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- fyziologická neovaskularizace fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus MeSH
- kultivované buňky MeSH
- leukocyty mononukleární cytologie metabolismus MeSH
- lidé MeSH
- regenerativní lékařství metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
1 Surgery Department St Anne's University Hospital Brno Brno Czech Republic
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Carmeliet P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395 PubMed
Folkman J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31 PubMed
Cooke JP. (2003). Flow, NO, and atherogenesis. Proc Natl Acad Sci U S A 100:768–770 PubMed PMC
Huang L, Perrault C, Coelho-Martins J, Hu C, Dulong C, Varna M, Liu J, Jin J, Soria C, et al. (2013). Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 6:49. PubMed PMC
Folkman J. (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286 PubMed
Herring M, Baughman S. and Glover J. (1985). Endothelium develops on seeded human arterial prosthesis: a brief clinical note. J Vasc Surg 2:727–730 PubMed
Herring M, Gardner A. and Glover J. (1978). A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 84:498–504 PubMed
Chong MS, Ng WK. and Chan JK. (2016). Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med 5:530–538 PubMed PMC
Jaffe EA, Nachman RL, Becker CG. and Minick CR. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756 PubMed PMC
Watkins MT, Sharefkin JB, Zajtchuk R, Maciag TM, D'Amore PA, Ryan US, Van Wart H. and Rich NM. (1984). Adult human saphenous vein endothelial cells: assessment of their reproductive capacity for use in endothelial seeding of vascular prostheses. J Surg Res 36:588–596 PubMed
Kinoshita M, Fujita Y, Katayama M, Baba R, Shibakawa M, Yoshikawa K, Katakami N, Furukawa Y, Tsukie T, et al. (2012). Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis 224:440–445 PubMed
Barsheshet A, Hod H, Shechter M, Sharabani-Yosef O, Rosenthal E, Barbash IM, Matetzky S, Tal R, Bentancur AG, et al. (2008). The effects of external counter pulsation therapy on circulating endothelial progenitor cells in patients with angina pectoris. Cardiology 110:160–166 PubMed
Baran Ç, Durdu S, Dalva K, Zaim Ç, Dogan A, Ocakoglu G, Gürman G, Arslan Ö. and Akar AR. (2012). Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial. Stem Cell Rev 8:963–971 PubMed
Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK. and Scadden DT. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25:317–318 PubMed
Kane NM, Meloni M, Spencer HL, Craig MA, Strehl R, Milligan G, Houslay MD, Mountford JC, Emanueli C. and Baker AH. (2010). Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 30:1389–1397 PubMed
Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L. and Murry CE. (2010). VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30:80–89 PubMed PMC
Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, et al. (2011). Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31:e72–e79 PubMed PMC
White MP, Rufaihah AJ, Liu L, Ghebremariam YT, Ivey KN, Cooke JP. and Srivastava D. (2013). Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells 31:92–103 PubMed PMC
Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S, Dijke PT. and Mummery CL. (2014). Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 34:177–186 PubMed
Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, Grainger SJ, Kapp FG, Sun L, et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003 PubMed PMC
Sahara M, Hansson EM, Wernet O, Lui KO, Später D. and Chien KR. (2014). Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res 24:820–841 PubMed PMC
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K. and Yamanaka S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872 PubMed
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920 PubMed
Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K. and Daley GQ. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479 PubMed PMC
Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G. and Jaenisch R. (2010). Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7:20–24 PubMed PMC
Loh YH, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, Urbach A, Heffner GC, Grskovic M, et al. (2010). Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7:15–19 PubMed PMC
Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N. and Yamanaka S. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466 PubMed
Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J. and Cheng L. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529 PubMed PMC
Li Y, Liu T, Van Halm-Lutterodt N, Chen J, Su Q. and Hai Y. (2016). Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther 7:31. PubMed PMC
Mack AA, Kroboth S, Rajesh D. and Wang WB. (2011). Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. PLoS One 6:e27956. PubMed PMC
Shah AJ, Smogorzewska EM, Hannum C. and Crooks GM. (1996). Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38− cells and maintains progenitor cells in vitro. Blood 87:3563–3570 PubMed
Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM. and Montgomery KD. (2011). Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313–314 PubMed
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118 PubMed PMC
Shrivastav M, De Haro LP. and Nickoloff JA. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147 PubMed
Simara P, Tesarova L, Rehakova D, Matula P, Stejskal S, Hampl A. and Koutna I. (2017). DNA double-strand breaks in hiPSC reprogramming and long-term in vitro culturing. Stem Cell Res Ther 8:73. PubMed PMC
Weissbein U, Benvenisty N. and Ben-David U. (2014). Quality control: genome maintenance in pluripotent stem cells. J Cell Biol 204:153–163 PubMed PMC
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II. and Thomson JA. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801 PubMed PMC
Šimara P, Tesařová L, Padourová S. and Koutná I. (2014). Generation of human induced pluripotent stem cells using genome integrating or non-integrating methods. Folia Biol (Praha) 60 (Suppl. 1):85–89 PubMed
van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, et al. (2003). Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. Leukemia 17:2257–2317 PubMed
Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, Ten Dijke P. and Mummery CL. (2014). Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc 9:1514–1531 PubMed
Ng ES, Davis R, Stanley EG. and Elefanty AG. (2008). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3:768–776 PubMed
Kittler J. and Illingworth J. (1986). Minimum error thresholding. Pattern Recognit 19:41–47
Soille P. (2004). Morphological Image Analysis. New York, NY: Springer-Verlag
Matula P, Maška M, Daněk O, Matula M. and Kozubek P. (2009). Acquiarium: free software for acquisition and analysis of 3 images of cells in fluorescence microscopy D. In: 6th International Symposium on Biomedical Imaging IEEE. Boston, pp. 1138–1141
Štěpka K, Matula P, Wörz S, Rohr K. and Kozubek M. (2015). Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy. Cytometry A 87:759–772 PubMed
Heike T. and Nakahata T. (2002). Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 1592:313–321 PubMed
Kim Y, Rim YA, Yi H, Park N, Park SH. and Ju JH. (2016). The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation. Stem Cells Int 2016:1329459. PubMed PMC
Zhang XB. (2013). Cellular reprogramming of human peripheral blood cells. Genomics Proteomics Bioinformatics 11:264–274 PubMed PMC
Scoumanne A, Kalamati T, Moss J, Powell JT, Gosling M. and Carey N. (2002). Generation and characterisation of human saphenous vein endothelial cell lines. Atherosclerosis 160:59–67 PubMed
Pelosi E, Castelli G. and Testa U. (2014). Endothelial progenitors. Blood Cells Mol Dis 52:186–194 PubMed
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G. and Isner JM. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967 PubMed
Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA. and Rafii S. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958 PubMed
de la Puente P, Muz B, Azab F. and Azab AK. (2013). Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res 19:3360–3368 PubMed
Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM. and Park YB. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293 PubMed
Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, et al. (2017). Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med 6:1316–1320 PubMed PMC
Minami Y, Nakajima T, Ikutomi M, Morita T, Komuro I, Sata M. and Sahara M. (2015). Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. Int J Cardiol 186:305–314 PubMed
Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T. and Morita I. (2008). A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440 PubMed
Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM, Tsai TN, Chen JW. and Wang HW. (2013). Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14:182. PubMed PMC
Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D. and Dalton S. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333 PubMed
Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ. and Stein GS. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893 PubMed
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T. and Draper JS. (2013). Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 22:279–295 PubMed
Barta T, Dolezalova D, Holubcova Z. and Hampl A. (2013). Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture. Exp Biol Med (Maywood) 238:271–275 PubMed
Adams BR, Golding SE, Rao RR. and Valerie K. (2010). Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 5:e10001. PubMed PMC
Huang X, Tanaka T, Kurose A, Traganos F. and Darzynkiewicz Z. (2006). Constitutive histone H2AX phosphorylation on Ser-139 in cells untreated by genotoxic agents is cell-cycle phase specific and attenuated by scavenging reactive oxygen species. Int J Oncol 29:495–501 PubMed
MacPhail SH, Banáth JP, Yu Y, Chu E. and Olive PL. (2003). Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res 159:759–767 PubMed
Suchánková J, Kozubek S, Legartová S, Sehnalová P, Küntziger T. and Bártová E. (2015). Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci. Biol Cell 107:440–454 PubMed
Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S. and Watanabe M. (2006). Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation. Radiat Res 165:499–504 PubMed
Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE. and Benvenisty N. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531 PubMed
Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharv H, Baker J, Baker D, Munoz MB, et al. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144 PubMed PMC
Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H. and Andrews PW. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215 PubMed
Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA. and Andrews PW. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54 PubMed
Ben-David U, Mayshar Y. and Benvenisty N. (2011). Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9:97–102 PubMed
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, et al. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376:1038–1046 PubMed
In vitro human cell culture models in a bench-to-bedside approach to epilepsy
The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells