The Role of RNA Polymerase II Contiguity and Long-Range Interactions in the Regulation of Gene Expression in Human Pluripotent Stem Cells

. 2019 ; 2019 () : 1375807. [epub] 20190203

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30863449

The eukaryotic nucleus is a highly complex structure that carries out multiple functions primarily needed for gene expression, and among them, transcription seems to be the most fundamental. Diverse approaches have demonstrated that transcription takes place at discrete sites known as transcription factories, wherein RNA polymerase II (RNAP II) is attached to the factory and immobilized while transcribing DNA. It has been proposed that transcription factories promote chromatin loop formation, creating long-range interactions in which relatively distant genes can be transcribed simultaneously. In this study, we examined long-range interactions between the POU5F1 gene and genes previously identified as being POU5F1 enhancer-interacting, namely, CDYL, TLE2, RARG, and MSX1 (all involved in transcriptional regulation), in human pluripotent stem cells (hPSCs) and their early differentiated counterparts. As a control gene, RUNX1 was used, which is expressed during hematopoietic differentiation and not associated with pluripotency. To reveal how these long-range interactions between POU5F1 and the selected genes change with the onset of differentiation and upon RNAP II inhibition, we performed three-dimensional fluorescence in situ hybridization (3D-FISH) followed by computational simulation analysis. Our analysis showed that the numbers of long-range interactions between specific genes decrease during differentiation, suggesting that the transcription of monitored genes is associated with pluripotency. In addition, we showed that upon inhibition of RNAP II, long-range associations do not disintegrate and remain constant. We also analyzed the distance distributions of these genes in the context of their positions in the nucleus and revealed that they tend to have similar patterns resembling normal distribution. Furthermore, we compared data created in vitro and in silico to assess the biological relevance of our results.

Zobrazit více v PubMed

Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI

Takahashi K., Tanabe K., Ohnuki M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Meshorer E., Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nature Reviews Molecular Cell Biology. 2006;7(7):540–546. doi: 10.1038/nrm1938. PubMed DOI

Bártová E., Krejčí J., Harničarová A., Kozubek S. Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation. 2008;76(1):24–32. doi: 10.1111/j.1432-0436.2007.00192.x. PubMed DOI

Rao S. S., Huntley M. H., Durand N. C., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–1680. doi: 10.1016/j.cell.2014.11.021. PubMed DOI PMC

Bouwman B. A. M., de Laat W. Architectural hallmarks of the pluripotent genome. FEBS Letters. 2015;589(20PartA):2905–2913. doi: 10.1016/j.febslet.2015.04.055. PubMed DOI

Neph S., Stergachis A. B., Reynolds A., Sandstrom R., Borenstein E., Stamatoyannopoulos J. A. Circuitry and dynamics of human transcription factor regulatory networks. Cell. 2012;150(6):1274–1286. doi: 10.1016/j.cell.2012.04.040. PubMed DOI PMC

Jackson D. A., Hassan A. B., Errington R. J., Cook P. R. Visualization of focal sites of transcription within human nuclei. The EMBO Journal. 1993;12(3):1059–1065. doi: 10.1002/j.1460-2075.1993.tb05747.x. PubMed DOI PMC

Grande M. A., van der Kraan I., de Jong L., van Driel R. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. Journal of Cell Science. 1997;110:1781–1791. PubMed

Verschure P. J., van der Kraan I., Manders E. M. M., van Driel R. Spatial relationship between transcription sites and chromosome territories. The Journal of Cell Biology. 1999;147(1):13–24. doi: 10.1083/jcb.147.1.13. PubMed DOI PMC

Olson M. O. J., Dundr M., Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends in Cell Biology. 2000;10(5):189–196. doi: 10.1016/S0962-8924(00)01738-4. PubMed DOI

Jin D. J., Mata Martin C., Sun Z., Cagliero C., Zhou Y. N. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Critical Reviews in Biochemistry and Molecular Biology. 2016;52(1):96–106. doi: 10.1080/10409238.2016.1269717. PubMed DOI PMC

Sanyal A., Lajoie B. R., Jain G., Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489(7414):109–113. doi: 10.1038/nature11279. PubMed DOI PMC

Engel J. D., Tanimoto K. Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell. 2000;100(5):499–502. doi: 10.1016/S0092-8674(00)80686-8. PubMed DOI

Liu Z., Garrard W. T. Long-range interactions between three transcriptional enhancers, active Vκ gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Molecular and Cellular Biology. 2005;25(8):3220–3231. doi: 10.1128/MCB.25.8.3220-3231.2005. PubMed DOI PMC

Ling J. Q., Li T., Hu J. F., et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science. 2006;312(5771):269–272. doi: 10.1126/science.1123191. PubMed DOI

Apostolou E., Ferrari F., Walsh R. M., et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell. 2013;12(6):699–712. doi: 10.1016/j.stem.2013.04.013. PubMed DOI PMC

Jackson D. A., Iborra F. J., Manders E. M. M., Cook P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Molecular Biology of the Cell. 1998;9(6):1523–1536. doi: 10.1091/mbc.9.6.1523. PubMed DOI PMC

Osborne C. S. Molecular pathways: transcription factories and chromosomal translocations. Clinical Cancer Research. 2014;20(2):296–300. doi: 10.1158/1078-0432.CCR-12-3667. PubMed DOI

Creyghton M. P., Cheng A. W., Welstead G. G., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences. 2010;107(50):21931–21936. doi: 10.1073/pnas.1016071107. PubMed DOI PMC

Ji X., Dadon D. B., Powell B. E., et al. 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell. 2016;18(2):262–275. doi: 10.1016/j.stem.2015.11.007. PubMed DOI PMC

Bensaude O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription. 2011;2(3):103–108. doi: 10.4161/trns.2.3.16172. PubMed DOI PMC

Sedlacek H. H. Mechanisms of action of flavopiridol. Critical Reviews in Oncology/Hematology. 2001;38(2):139–170. doi: 10.1016/S1040-8428(00)00124-4. PubMed DOI

Baumli S., Lolli G., Lowe E. D., et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. The EMBO Journal. 2008;27(13):1907–1918. doi: 10.1038/emboj.2008.121. PubMed DOI PMC

Wang L.-M., Ren D.-M. Flavopiridol, the first cyclin-dependent kinase inhibitor: recent advances in combination chemotherapy. Mini Reviews in Medicinal Chemistry. 2010;10(11):1058–1070. doi: 10.2174/1389557511009011058. PubMed DOI

Abou-Nassar K., Brown J. Novel agents for the treatment of chronic lymphocytic leukemia. Clinical Advances in Hematology & Oncology. 2010;8(12):886–895. PubMed

Niwa H., Miyazaki J., Smith A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics. 2000;24(4):372–376. doi: 10.1038/74199. PubMed DOI

Wei Z., Gao F., Kim S., et al. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell. 2013;13(1):36–47. doi: 10.1016/j.stem.2013.05.010. PubMed DOI

Gao F., Wei Z., An W., Wang K., Lu W. The interactomes of POU5F1 and SOX2 enhancers in human embryonic stem cells. Scientific Reports. 2013;3(1) doi: 10.1038/srep01588. PubMed DOI PMC

Okuda T., Nishimura M., Nakao M., Fujitaa Y. RUNX1/AML1: a central player in hematopoiesis. International Journal of Hematology. 2001;74(3):252–257. doi: 10.1007/BF02982057. PubMed DOI

Zhang J., Poh H. M., Peh S. Q., et al. ChiA-PET analysis of transcriptional chromatin interactions. Methods. 2012;58(3):289–299. doi: 10.1016/j.ymeth.2012.08.009. PubMed DOI

Initiative T. I., Adewumi O., Aflatoonian B., et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology. 2007;25(7):803–816. doi: 10.1038/nbt1318. PubMed DOI

Simara P., Tesarova L., Rehakova D., et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells. Stem Cells and Development. 2018;27(1):10–22. doi: 10.1089/scd.2017.0132. PubMed DOI PMC

Svoboda D., Kozubek M., Stejskal S. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry Part A. 2009;75A(6):494–509. doi: 10.1002/cyto.a.20714. PubMed DOI

Ulman V., Svoboda D., Nykter M., Kozubek M., Ruusuvuori P. Virtual cell imaging: a review on simulation methods employed in image cytometry. Cytometry Part A. 2016;89(12):1057–1072. doi: 10.1002/cyto.a.23031. PubMed DOI

Perlin K. An image synthesizer. ACM SIGGRAPH Computer Graphics. 1985;19(3):287–296. doi: 10.1145/325165.325247. DOI

Svoboda D., Ulman V. Towards a realistic distribution of cells in synthetically generated 3D cell populations. In: Petrosino A., editor. Image Analysis and Processing – ICIAP 2013. Vol. 8157. Berlin, Heidelberg: Springer; 2013. DOI

Lian X., Zhang J., Azarin S. M., et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nature Protocols. 2013;8(1):162–175. doi: 10.1038/nprot.2012.150. PubMed DOI PMC

Radzisheuskaya A., Le Bin Chia G., dos Santos R. L., et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nature Cell Biology. 2013;15(6):579–590. doi: 10.1038/ncb2742. PubMed DOI PMC

Nichols J., Zevnik B., Anastassiadis K., et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–391. doi: 10.1016/S0092-8674(00)81769-9. PubMed DOI

Boyer L. A., Lee T. I., Cole M. F., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–956. doi: 10.1016/j.cell.2005.08.020. PubMed DOI PMC

Wang J., Rao S., Chu J., et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364–368. doi: 10.1038/nature05284. PubMed DOI

Dean A. In the loop: long range chromatin interactions and gene regulation. Briefings in Functional Genomics. 2011;10(1):3–10. doi: 10.1093/bfgp/elq033. PubMed DOI PMC

Dekker J., Marti-Renom M. A., Mirny L. A. Exploring the three-dimensional organization of genomes interpreting chromatin interaction data. Nature Reviews Genetics. 2013;14(6):390–403. doi: 10.1038/nrg3454. PubMed DOI PMC

Levsky J. M., Singer R. H. Fluorescence in situ hybridization: past, present and future. Journal of Cell Science. 2003;116(14):2833–2838. doi: 10.1242/jcs.00633. PubMed DOI

Joffe B., Leonhardt H., Solovei I. Differentiation and large scale spatial organization of the genome. Current Opinion in Genetics and Development. 2010;20(5):562–569. doi: 10.1016/j.gde.2010.05.009. PubMed DOI

Solovei I., Cavallo A., Schermelleh L., et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH) Experimental Cell Research. 2002;276(1):10–23. doi: 10.1006/excr.2002.5513. PubMed DOI

Marsman J., Horsfield J. A. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2012;1819(11-12):1217–1227. doi: 10.1016/j.bbagrm.2012.10.008. PubMed DOI

Augui S., Filion G. J., Huart S., et al. Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science. 2007;318(5856):1632–1636. doi: 10.1126/science.1149420. PubMed DOI

LaSalle J. M., Lalande M. Homologous association of oppositely imprinted chromosomal domains. Science. 1996;272(5262):725–728. doi: 10.1126/science.272.5262.725. PubMed DOI

Masui O., Bonnet I., Le Baccon P., et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell. 2011;145(3):447–458. doi: 10.1016/j.cell.2011.03.032. PubMed DOI PMC

Hogan M. S., Parfitt D.-E., Zepeda-Mendoza C. J., Shen M. M., Spector D. L. Transient pairing of homologous Oct4 alleles accompanies the onset of embryonic stem cell differentiation. Cell Stem Cell. 2015;16(3):275–288. doi: 10.1016/j.stem.2015.02.001. PubMed DOI PMC

Lieberman-Aiden E., van Berkum N. L., Williams L., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–293. doi: 10.1126/science.1181369. PubMed DOI PMC

Mattout A., Meshorer E. Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Current Opinion in Cell Biology. 2010;22(3):334–341. doi: 10.1016/j.ceb.2010.02.001. PubMed DOI

Sood R., Kamikubo Y., Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070–2082. doi: 10.1182/blood-2016-10-687830. PubMed DOI PMC

Escamilla-Del-Arenal M., da Rocha S. T., Spruijt C. G., et al. Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Molecular and Cellular Biology. 2013;33(24):5005–5020. doi: 10.1128/MCB.00866-13. PubMed DOI PMC

Wan L., Hu X. J., Yan S. X., et al. Generation and neuronal differentiation of induced pluripotent stem cells in Cdyl-/- mice. Neuroreport. 2013;24(3):114–119. doi: 10.1097/WNR.0b013e32835cf179. PubMed DOI

Roth M., Bonev B., Lindsay J., et al. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. Development. 2010;137(9):1553–1562. doi: 10.1242/dev.044909. PubMed DOI PMC

Yu X., Zou J., Ye Z., et al. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment. Cell Stem Cell. 2008;2(5):461–471. doi: 10.1016/j.stem.2008.03.001. PubMed DOI PMC

Chen C.-Y., Liao W., Lou Y.-L., et al. Inhibition of Notch signaling facilitates the differentiation of human-induced pluripotent stem cells into neural stem cells. Molecular and Cellular Biochemistry. 2014;395(1-2):291–298. doi: 10.1007/s11010-014-2130-3. PubMed DOI

Wang W., Yang J., Liu H., et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences. 2011;108(45):18283–18288. doi: 10.1073/pnas.1100893108. PubMed DOI PMC

Chatagnon A., Veber P., Morin V., et al. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Research. 2015;43(10):4833–4854. doi: 10.1093/nar/gkv370. PubMed DOI PMC

Zeineddine D., Papadimou E., Chebli K., et al. Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Developmental Cell. 2006;11(4):535–546. doi: 10.1016/j.devcel.2006.07.013. PubMed DOI

Simandi Z., Horvath A., Wright L. C., et al. OCT4 acts as an integrator of pluripotency and signal-induced differentiation. Molecular Cell. 2016;63(4):647–661. doi: 10.1016/j.molcel.2016.06.039. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...