Importance of Attachment Efficiency in Determining the Fate of PS and PVC Nanoplastic Heteroaggregation with Natural Colloids Using a Multimedia Model
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40025674
PubMed Central
PMC11912305
DOI
10.1021/acs.est.4c10918
Knihovny.cz E-resources
- Keywords
- SimpleBox4Plastics model, freshwater, microplastics, natural organic matter, plastic fate,
- MeSH
- Models, Chemical MeSH
- Calcium Chloride chemistry MeSH
- Colloids chemistry MeSH
- Nanoparticles MeSH
- Silicon Dioxide chemistry MeSH
- Polystyrenes * chemistry MeSH
- Polyvinyl Chloride * chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Calcium Chloride MeSH
- Colloids MeSH
- Silicon Dioxide MeSH
- Polystyrenes * MeSH
- Polyvinyl Chloride * MeSH
Here, we assessed the heteroaggregation of polystyrene (PS) and poly(vinyl chloride) (PVC) nanoplastics with SiO2 as a model of natural colloids. Homoaggregation and heteroaggregation were evaluated as a function of CaCl2 (0-100 mM) and natural organic matter (NOM) (50 mg L-1) at a designated concentration of nanoplastics (200 μg L-1). Critical coagulation concentrations (CCC) of nanoplastics were determined in homoaggregation and heteroaggregation experiments with SiO2 and CaCl2. The attachment efficiency (α) was calculated by quantifying the number of nanoplastics in the presence of CaCl2, NOM, and SiO2 using single-particle inductively coupled plasma mass spectrometry (spICP-MS) and pseudo-first-order kinetics. The calculated α was fed into the SimpleBox4Plastics model to predict the fate of nanoplastics across air, water, soil, and sediment compartments. Nanoplastics exhibited high stability against homoaggregation, while significant heteroaggregation with SiO2 occurred at CaCl2 concentrations above 100 mM. The influence of NOM was also evaluated, showing a reduction in heteroaggregation with SiO2 for both nanoplastic types. Sensitivity analysis indicated that the degradation half-life of the tested nanoplastics had a more significant impact on persistence than did α. The results emphasize the environmental stability of nanoplastics, particularly in freshwater and soil compartments, and the critical role of NOM and emission pathways in determining their fate.
Department of Chemical Sciences University of Padua Via Francesco Marzolo 1 35122 Padua Italy
Institute of Biochemistry and Biology Potsdam University 14469 Potsdam Germany
See more in PubMed
Abdolahpur Monikh F.; Hansen S. F.; Vijver M.; Kentin E.; Nielsen M. B.; Baun A.; Syberg K.; Lynch I.; Valsami-Jones E.; Peijnenburg W. Can Current Regulations Account for Intentionally Produced Nanoplastics?. Environ. Sci. Technol. 2022, 56 (7), 3836–3839. 10.1021/acs.est.2c00965. PubMed DOI PMC
Meng Z.; Recoura-Massaquant R.; Chaumot A.; Stoll S.; Liu W. Acute Toxicity of Nanoplastics on Daphnia and Gammarus Neonates: Effects of Surface Charge, Heteroaggregation, and Water Properties. Sci. Total Environ. 2023, 854, 158763.10.1016/j.scitotenv.2022.158763. PubMed DOI
Geitner N. K.; O’Brien N. J.; Turner A. A.; Cummins E. J.; Wiesner M. R. Measuring Nanoparticle Attachment Efficiency in Complex Systems. Environ. Sci. Technol. 2017, 51 (22), 13288–13294. 10.1021/acs.est.7b04612. PubMed DOI
Praetorius A.; Tufenkji N.; Goss K.-U.; Scheringer M.; von der Kammer F.; Elimelech M. The Road to Nowhere: Equilibrium Partition Coefficients for Nanoparticles. Environ. Sci.:Nano 2014, 1 (4), 317.10.1039/C4EN00043A. DOI
Lagarde F.; Olivier O.; Zanella M.; Daniel P.; Hiard S.; Caruso A. Microplastic Interactions with Freshwater Microalgae: Hetero-Aggregation and Changes in Plastic Density Appear Strongly Dependent on Polymer Type. Environ. Pollut. 2016, 215, 331–339. 10.1016/j.envpol.2016.05.006. PubMed DOI
Abdolahpur Monikh F.; Vijver M. G.; Mitrano D. M.; Leslie H. A.; Guo Z.; Zhang P.; Lynch I.; Valsami-Jones E.; Peijnenburg W. J. G. M. The Analytical Quest for Sub-Micron Plastics in Biological Matrices. Nano Today 2021, 41, 101296.10.1016/j.nantod.2021.101296. DOI
Pradel A.; Ferreres S.; Veclin C.; El Hadri H.; Gautier M.; Grassl B.; Gigault J. Stabilization of Fragmental Polystyrene Nanoplastic by Natural Organic Matter: Insight into Mechanisms. ACS ES&T Water 2021, 1 (5), 1198–1208. 10.1021/acsestwater.0c00283. DOI
Oriekhova O.; Stoll S. Heteroaggregation of Nanoplastic Particles in the Presence of Inorganic Colloids and Natural Organic Matter. Environ. Sci.:Nano 2018, 5 (3), 792–799. 10.1039/C7EN01119A. DOI
Wu J.; Liu J.; Wu P.; Sun L.; Chen M.; Shang Z.; Ye Q.; Zhu N. The Heteroaggregation and Deposition Behavior of Nanoplastics on Al2O3 in Aquatic Environments. J. Hazard. Mater. 2022, 435, 128964.10.1016/j.jhazmat.2022.128964. PubMed DOI
Wu J.; Ye Q.; Wu P.; Xu S.; Liu Y.; Ahmed Z.; Rehman S.; Zhu N. Heteroaggregation of Nanoplastics with Oppositely Charged Minerals in Aquatic Environment: Experimental and Theoretical Calculation Study. Chem. Eng. J. 2022, 428, 131191.10.1016/j.cej.2021.131191. DOI
Wu J.; Ye Q.; Li P.; Sun L.; Huang M.; Liu J.; Ahmed Z.; Wu P. The Heteroaggregation Behavior of Nanoplastics on Goethite: Effects of Surface Functionalization and Solution Chemistry. Sci. Total Environ. 2023, 870, 161787.10.1016/j.scitotenv.2023.161787. PubMed DOI
Meesters J. A. J.; Peijnenburg W. J. G. M.; Hendriks A. J.; Van De Meent D.; Quik J. T. K. A Model Sensitivity Analysis to Determine the Most Important Physicochemical Properties Driving Environmental Fate and Exposure of Engineered Nanoparticles. Environ. Sci.:Nano 2019, 6 (7), 2049–2060. 10.1039/C9EN00117D. DOI
Meesters J. A. J.; Koelmans A. A.; Quik J. T. K.; Hendriks A. J.; Van De Meent D. Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: Model Definition and Evaluation. Environ. Sci. Technol. 2014, 48 (10), 5726–5736. 10.1021/es500548h. PubMed DOI PMC
Quik J. T. K.; Meesters J. A. J.; Koelmans A. A. A Multimedia Model to Estimate the Environmental Fate of Microplastic Particles. Sci. Total Environ. 2023, 882, 163437.10.1016/j.scitotenv.2023.163437. PubMed DOI PMC
Zhang W.; Crittenden J.; Li K.; Chen Y. Attachment Efficiency of Nanoparticle Aggregation in Aqueous Dispersions: Modeling and Experimental Validation. Environ. Sci. Technol. 2012, 46 (13), 7054–7062. 10.1021/es203623z. PubMed DOI
Praetorius A.; Badetti E.; Brunelli A.; Clavier A.; Gallego-Urrea J. A.; Gondikas A.; Hassellöv M.; Hofmann T.; Mackevica A.; Marcomini A.; Peijnenburg W.; Quik J. T. K.; Seijo M.; Stoll S.; Tepe N.; Walch H.; Von Der Kammer F. Strategies for Determining Heteroaggregation Attachment Efficiencies of Engineered Nanoparticles in Aquatic Environments. Environ. Sci.:Nano 2020, 7 (2), 351–367. 10.1039/C9EN01016E. DOI
Clavier A.; Praetorius A.; Stoll S. Determination of Nanoparticle Heteroaggregation Attachment Efficiencies and Rates in Presence of Natural Organic Matter Monomers. Monte Carlo Modelling. Sci. Total Environ. 2019, 650, 530–540. 10.1016/j.scitotenv.2018.09.017. PubMed DOI
Hou J.; Ci H.; Wang P.; Wang C.; Lv B.; Miao L.; You G. Nanoparticle Tracking Analysis versus Dynamic Light Scattering: Case Study on the Effect of Ca2+ and Alginate on the Aggregation of Cerium Oxide Nanoparticles. J. Hazard. Mater. 2018, 360, 319–328. 10.1016/j.jhazmat.2018.08.010. PubMed DOI
Barton L. E.; Therezien M.; Auffan M.; Bottero J. Y.; Wiesner M. R. Theory and Methodology for Determining Nanoparticle Affinity for Heteroaggregation in Environmental Matrices Using Batch Measurements. Environ. Eng. Sci. 2014, 31 (7), 421–427. 10.1089/ees.2013.0472. DOI
Abdolahpur Monikh F.; Chupani L.; Vijver M. G.; Vancová M.; Peijnenburg W. J. G. M. Analytical Approaches for Characterizing and Quantifying Engineered Nanoparticles in Biological Matrices from an (Eco)Toxicological Perspective: Old Challenges, New Methods and Techniques. Sci. Total Environ. 2019, 660, 1283–1293. 10.1016/j.scitotenv.2019.01.105. PubMed DOI
Abdolahpur Monikh F.; Guo Z.; Zhang P.; Vijver M. G.; Lynch I.; Valsami-Jones E.; Peijnenburg W. J. G. M. An Analytical Workflow for Dynamic Characterization and Quantification of Metal-Bearing Nanomaterials in Biological Matrices. Nat. Protoc. 2022, 17 (9), 1926–1952. 10.1038/s41596-022-00701-x. PubMed DOI
Abdolahpur Monikh F.; Holm S.; Kortet R.; Bandekar M.; Kekäläinen J.; Koistinen A.; Leskinen J. T. T.; Akkanen J.; Huuskonen H.; Valtonen A.; Dupuis L.; Peijnenburg W.; Lynch I.; Valsami-Jones E.; Kukkonen J. V. K. Quantifying the Trophic Transfer of Sub-Micron Plastics in an Assembled Food Chain. Nano Today 2022, 46, 101611.10.1016/j.nantod.2022.101611. DOI
Turner A. A.; Rogers N. M. K.; Wiesner M. R.; Geitner N. K. Nanoparticle Affinity for Natural Soils: A Functional Assay for Determining Particle Attachment Efficiency in Complex Systems. Environ. Sci.:Nano 2020, 7 (6), 1719–1729. 10.1039/d0en00019a. DOI
Ettrup K.; Kounina A.; Hansen S. F.; Meesters J. A. J.; Vea E. B.; Laurent A. Development of Comparative Toxicity Potentials of TiO2 Nanoparticles for Use in Life Cycle Assessment. Environ. Sci. Technol. 2017, 51 (7), 4027–4037. 10.1021/acs.est.6b05049. PubMed DOI
Salieri B.; Hischier R.; Quik J. T. K.; Jolliet O. Fate Modelling of Nanoparticle Releases in LCA: An Integrative Approach towards “USEtox4Nano. J. Cleaner Prod. 2019, 206, 701–712. 10.1016/j.jclepro.2018.09.187. DOI
Alimi O. S.; Farner J. M.; Rowenczyk L.; Petosa A. R.; Claveau-Mallet D.; Hernandez L. M.; Wilkinson K. J.; Tufenkji N. Mechanistic Understanding of the Aggregation Kinetics of Nanoplastics in Marine Environments: Comparing Synthetic and Natural Water Matrices. J. Hazard. Mater. Adv. 2022, 7 (June), 100115.10.1016/j.hazadv.2022.100115. DOI
Bandekar M.; Abdolahpur Monikh F.; Kekäläinen J.; Tahvanainen T.; Kortet R.; Zhang P.; Guo Z.; Akkanen J.; Leskinen J. T. T.; Gomez-Gonzalez M. A.; Krishna Darbha G.; Grossart H. P.; Valsami-Jones E.; Kukkonen J. V. K. Submicron Plastic Adsorption by Peat, Accumulation in Sphagnum Mosses and Influence on Bacterial Communities in Peatland Ecosystems. Environ. Sci. Technol. 2022, 56 (22), 15661–15671. 10.1021/acs.est.2c04892. PubMed DOI PMC
Organization for Economic Cooperation and Development . GD 318: Guidance Document for the Testing of Dissolution and Dispersion Stability of Nanomaterials and the Use of the Data for Further Environmental Testing and Assessment Strategies. Series on Testing and Assessment No. 318. OECD Guidel. Test. Chem.2020.
Abdolahpur Monikh F.; Praetorius A.; Schmid A.; Kozin P.; Meisterjahn B.; Makarova E.; Hofmann T.; von der Kammer F. Scientific Rationale for the Development of an OECD Test Guideline on Engineered Nanomaterial Stability. NanoImpact 2018, 11, 42–50. 10.1016/j.impact.2018.01.003. DOI
Quik J.Rivm-Syso/SimpleBox: SimpleBox4plastic Xl4plastic_v4.0.4; Zenodo, 2024.
Dong S.; Cai W.; Xia J.; Sheng L.; Wang W.; Liu H. Aggregation Kinetics of Fragmental PET Nanoplastics in Aqueous Environment: Complex Roles of Electrolytes, PH and Humic Acid. Environ. Pollut. 2021, 268, 115828.10.1016/j.envpol.2020.115828. PubMed DOI
Chatterjee B.; Gjessing E.; Kukkonen J. V. K.; Larsen H. E.; Luster J.; Paul A.; Pflugmacher S.; Starr M.; Steinberg C. E. W.; Schmitt-Kopplin P.; Vogt R. D.; Akkanen J.; Andersen D. O.; Zsolnay A. ´.; Brüggemann R. Key site variables governing the functional characteristics of Dissolved Natural Organic Matter (DNOM) in Nordic forested catchments. Aquat. Sci. 2004, 66, 195–210. 10.1007/s00027-004-0710-0. DOI
Wang Z.; Zhang L.; Zhao J.; Xing B. Environmental Processes and Toxicity of Metallic Nanoparticles in Aquatic Systems as Affected by Natural Organic Matter. Environ. Sci.: Nano 2016, 3, 240–255. 10.1039/C5EN00230C. DOI
Pradel A.; Catrouillet C.; Gigault J. The Environmental Fate of Nanoplastics: What We Know and What We Need to Know about Aggregation. NanoImpact 2023, 29, 100453.10.1016/j.impact.2023.100453. PubMed DOI