Magnetic Hydrogel Microrobots as Insecticide Carriers for In Vivo Insect Pest Control in Plants
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000444
Advanced Functional Nanorobots
PubMed
36585370
DOI
10.1002/smll.202204887
Knihovny.cz E-zdroje
- Klíčová slova
- chemicals delivery, hydrogel, magnetic-driven, nano/microrobots, pesticides,
- MeSH
- chitosan * MeSH
- hmyz MeSH
- hydrogely MeSH
- insekticidy * MeSH
- kontrola škůdců MeSH
- lidé MeSH
- magnetické jevy MeSH
- pesticidy * MeSH
- Tenebrio * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chitosan * MeSH
- hydrogely MeSH
- insekticidy * MeSH
- pesticidy * MeSH
The cost of insect pests to human society exceeds USD70 billion per year worldwide in goods, livestock, and healthcare services. Therefore, pesticides are needed to prevent insect damage despite the secondary effects of these chemical agents on non-target organisms. Chemicals encapsulation into carriers is a promising strategy to improve their specificity. Hydrogel-based microrobots show enormous potential as chemical carriers. Herein, hydrogel chitosan magnetic microrobots encapsulating ethyl parathion (EP)-CHI@Fe3 O4 are used to efficiently kill mealworm larvae (Tenebrio molitor). The mechanism takes advantage of pH-responsive chitosan degradation at Tenebrio molitor midgut pH to efficiently deliver pesticide into the mealworm intestinal tract in just 2 h. It is observed that under a transversal rotating magnetic field, mealworm populations show higher mortality after 30 min compared to free pesticide. This example of active pesticide carriers based on soft microrobots opens new avenues for microrobots applications in the agrochemical field as active chemical carriers.
Zobrazit více v PubMed
C. J. A. Bradshaw, B. Leroy, C. Bellard, D. Roiz, C. Albert, A. Fournier, M. Barbet-Massin, J.-M. Salles, F. Simard, F. Courchamp, Nat. Commun. 2016, 7, 12986.
C. M. Oliveira, A. M. Auad, S. M. Mendes, M. R. Frizzas, J. Appl. Entomol. 2013, 137, 1.
D. Pimentel, Area-Wide Control of Insect Pests, Springer, Berlin, Germany 2007.
R. A. J. Taylor, D. A. Herms, J. Cardina, R. H. Moore, Agronomy 2018, 8, 7.
N. S. Diffenbaugh, C. H. Krupke, M. A. White, C. E. Alexander, Environ. Res. Lett. 2008, 3, 044007.
L. Rani, K. Thapa, N. Kanojia, N. Sharma, S. Singh, A. S. Grewal, A. L. Srivastav, J. Kaushal, J. Clean Prod. 2021, 283, 124657.
A. Sharma, A. Shukla, K. Attri, M. Kumar, P. Kumar, A. Suttee, G. Singh, R. P. Barnwal, N. Singla, Ecotoxicol. Environ. Saf. 2020, 201, 110812.
M. Nuruzzaman, M. M. Rahman, Y. Liu, R. Naidu, J. Agric. Food Chem. 2016, 64, 1447.
A. V. Kabanov, S. V. Vinogradov, Angew. Chem., Int. Ed. 2009, 48, 5418.
S. A. Ferreira, F. M. Gama, M. Vilanova, Nanomedicine 2013, 9, 159.
M. C. Neri-Badang, S. Chakraborty, J. Carbohydr. Chem. 2019, 38, 67.
H. Yi, L.-Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver, G. F. Payne, Biomacromolecules 2005, 6, 2881.
M. Mujtaba, K. M. Khawar, M. Candido Camara, L. Bragança Carvalho, L. Fernandes Fraceto, R. E. Morsi, M. Z. Elsabee, M. Kaya, J. Labidi, H. Ullah, D. Wang, Int. J. Biol. Macromol. 2020, 154, 683.
L. Fan, R. Jin, X. Le, X. Zhou, S. Chen, H. Liu, Y. Xiong, Microchim. Acta 2012, 176, 381.
M. dos Santos Silva, D. Sgarbi Cocenza, R. Grillo, N. F. Silva de Melo, P. S. Tonello, L. Camargo de Oliveira, D. Lopes Cassimiro, A. H. Rosa, L. Fernandes Fraceto, J. Hazard. Mater. 2011, 190, 366.
T. Jamnongkan, S. Kaewpirom, J. Polym. Environ. 2010, 18, 413.
B. Esteban-Fernández de Ávila, P. Angsantikul, J. Li, W. Gao, L. Zhang, J. Wang, Adv. Funct. Mater. 2018, 28, 1705640.
A. Somasundar, A. Sen, Small 2011, 17, 2007102.
a) H. Wang, M. Pumera, Adv. Funct. Mater. 2018, 28, 1705421;
b) P. Mayorga-Burrezo, C. C. Mayorga-Martinez, M. Pumera, Adv. Funct. Mater. 2022, 32, 2106699;
c) M. Pacheco, C. C. Mayorga-Martinez, J. Viktorova, T. Ruml, A. Escarpa, M. Pumera, Appl. Mater. Today 2022, 27, 101494;
d) M. Ussia, M. Pumera, Chem. Soc. Rev. 2022, 51, 1558.
M. Medina-Sánchez, H. Xu, O. G. Schmidt, Ther Deliv 2018, 9, 303.
K. Yuan, Z. Jiang, B. Jurado-Sánchez, A. Escarpa, Eur. J. Chem. 2020, 26, 2309.
F. Mou, C. Chen, Q. Zhong, Y. Yin, H. Ma, J. Guan, ACS Appl. Mater. Interfaces 2014, 6, 9897.
Z. Wu, X. Lin, X. Zou, J. Sun, Q. He, ACS Appl. Mater. Interfaces 2015, 7, 250.
Y. Liang, H. Wang, D. Yao, Y. Chen, Y. Deng, C. Wang, J. Mater. Chem. 2017, 5, 18442.
S. Yang, J. Ren, H. Wang, Chem. - Eur. J. 2022, 28, e202103867.
R. Maria-Hormigos, A. Molinero-Fernandez, M. A. Lopez, B. Jurado-Sanchez, A. Escarpa, Anal. Chem. 2022, 94, 5575.
Z. L. Liu, H. B. Wang, Q. H. Lu, G. H. Du, L. Peng, Y. Q. Du, S. M. Zhang, K. L. Yao, J. Magn. Magn. Mater. 2004, 283, 258.
M. Agarwal, M. K. Agarwal, N. Shrivastav, S. Pandey, R. Das, P. Gaur, Int. J. Life Sci. 2018, 4, 1713.
S. Vaezifar, S. Razavi, M. A. Golozar, S. Karbasi, M. Morshed, M. Kamali, J. Clust. Sci. 2013, 24, 891.
H.-H. Perkampus, UV-VIS Spectroscopy and Its Applications, Springer-Verlag, Berlin, Heidelberg 1992.
X. Song, X. Luo, Q. Zhang, A. Zhu, L. Ji, C. Yan, J. Magn. Magn. Mater. 2015, 388, 116.
R. Suriyaprabha, S. H. Khan, B. Pathak, M. H. Fulekar, Int. J. Nanosci. Nanotechnol. 2017, 13, 169.
G.-Y. Li, Y.-R. Jiang, K.-L. Huang, P. Ding, J. Chen, J. Alloys Compd. 2008, 466, 451.
C. Zhang, Y. Dai, Y. Wu, G. Lu, Z. Cao, J. Cheng, K. Wang, H. Yang, Y. Xia, X. Wen, W. Ma, C. Liu, Z. Wang, Carbohydr. Polym. 2020, 234, 115882.
A. Kong, P. Wang, H. Zhang, F. Yang, S. P. Huang, Y. Shan, Appl. Catal. A-Gen. 2012, 417-418, 183.
W. Li, L. Xiao, C. Qin, J. Macromol. Sci. A. 2010, 48, 57.
H. Zhou, C. C. Mayorga-Martinez, M. Pumera, Small Methods 2021, 5, 2100230.
J. Vyskocil, C. C. Mayorga-Martinez, E. Jablonska, F. Novotný, T. Ruml, M. Pumera, ACS Nano 2020, 14, 8247.
J. Ostrowska-Czubenko, M. Gierszewska, M. Pieróg, J. Polym. Res. 2015, 22, 153.
J. Wanga, X. Guo, J. Hazard. Mater. 2020, 390, 122156.
K. S. Vinokurov, E. N. Elpidina, B. Oppert, S. Prabhakar, D. P. Zhuzhikov, Y. E. Dunaevsky, M. A. Belozersky, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 126.
M. Grassi, G. Grassi, Curr. Drug Deliv. 2005, 2, 97.
A. Plata-Rueda, L. C. Martínez, M. H. Dos Santos, F. Lemes Fernandes, C. F. Wilcken, M. Alvarenga Soares, J. E. Serrão, J. Cola Zanuncio, Sci. Rep. 2017, 7, 46406.
N. G. Kavallieratos, E. J. Michail, M. C. Boukouvala, E. P. Nika, A. Skourti, J. Stored Prod. Res. 2019, 83, 161.
S. Cosimi, E. Rossi, P. L. Cioni, A. Canale, J Stored Prod. Res. 2019, 45, 125.
C. T. J. Ferguson, A. A. Al-Khalaf, R. E. Isaac, O. J. Cayre, PLoS One 2018, 13, e0201294.
C. I. Rumbos, I. T. Karapanagiotidis, E. Mente, P. Psofakis, C. G. Athanassiou, Sci. Rep. 2020, 10, 11224.
Technology Roadmap of Micro/Nanorobots
Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates