Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36026536
DOI
10.1002/smll.202202600
Knihovny.cz E-zdroje
- Klíčová slova
- laccase, micromotors, microswimmers, self-electrophoresis, water purification,
- MeSH
- antibakteriální látky MeSH
- chemické látky znečišťující vodu * MeSH
- lakasa metabolismus MeSH
- lidé MeSH
- oxid zinečnatý * MeSH
- oxytetracyklin * MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- chemické látky znečišťující vodu * MeSH
- lakasa MeSH
- oxid zinečnatý * MeSH
- oxytetracyklin * MeSH
- voda MeSH
Antibiotics are antimicrobial substances that can be used for preventive and therapeutic purposes in humans and animals. Their overdose usage has led to uncontrolled release to the environment, contributing significantly to the development of antimicrobial resistance phenomena. Here, enzyme-immobilized self-propelled zinc oxide (ZnO) microrobots are proposed to effectively target and degrade the released antibiotics in water bodies. Specifically, the morphology of the microrobots is tailored via the incorporation of Au during the synthetic process to lead the light-controlled motion into having on/off switching abilities. The microrobots are further modified with laccase enzyme by physical adsorption, and the immobilization process is confirmed by enzymatic activity measurements. Oxytetracycline (OTC) is used as a model of veterinary antibiotics to investigate the enzyme-immobilized microrobots for their removal capacities. The results demonstrate that the presence of laccase on the microrobot surfaces can enhance the removal of antibiotics via oxidation. This concept for immobilizing enzymes on self-propelled light-driven microrobots leads to the effective removal of the released antibiotics from water bodies with an environmentally friendly strategy.
Zobrazit více v PubMed
J. Zdarta, K. Jankowska, K. Bachosz, E. Kijeńska-Gawrońska, A. Zgoła-Grześkowiak, E. Kaczorek, T. Jesionowski, Catal. Today 2020, 348, 127.
D. Becker, S. Varela Della Giustina, S. Rodriguez-Mozaz, R. Schoevaart, D. Barceló, M. de Cazes, M. P. Belleville, J. Sanchez-Marcano, J. de Gunzburg, O. Couillerot, J. Völker, J. Oehlmann, M. Wagner, Bioresour. Technol. 2016, 219, 500.
R. I. Aminov, Front. Microbiol. 2010, 1, 134.
R. Pulicharla, R. K. Das, S. Kaur Brar, P. Drogui, R. Y. Surampalli, Chem. Eng. J. 2018, 347, 828.
Y. Tang, W. Li, Y. Muhammad, S. Jiang, M. Huang, H. Zhang, Z. Zhao, Z. Zhao, Chem. Eng. J. 2021, 421, 129743.
J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye, J. Lin, J. Hazard. Mater. 2017, 322, 525.
M. Uygun, V. de la Asunción-Nadal, S. Evli, D. A. Uygun, B. Jurado-Sánchez, A. Escarpa, Appl. Mater. Today 2021, 23, 101045.
H. Zhou, C. C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999.
C. M. Oral, M. Ussia, D. K. Yavuz, M. Pumera, Small 2022, 18, 2106271.
L. Dekanovsky, B. Khezri, Z. Rottnerova, F. Novotny, J. Plutnar, M. Pumera, Nat. Mach. Intell. 2020, 2, 711.
M. Urso, C. Iffelsberger, C. C. Mayorga-Martinez, M. Pumera, Small Methods 2021, 5, 2100511.
J. Muñoz, M. Urso, M. Pumera, Angew. Chem., Int. Ed. 2022, 61, e202116090.
M. Valdez-Garduño, M. Leal-Estrada, E. S. Oliveros-Mata, D. I. Sandoval-Bojorquez, F. Soto, J. Wang, V. Garcia-Gradilla, Adv. Funct. Mater. 2020, 30, 2004043.
J. V. Vaghasiya, C. C. Mayorga-Martinez, S. Matějková, M. Pumera, Nat. Commun. 2022, 13, 1026.
M. Urso, M. Ussia, F. Novotný, M. Pumera, Nat. Commun. 2022, 13, 3573.
M. Ussia, M. Pumera, Chem. Soc. Rev. 2022, 51, 1558.
H. Zhou, C. C. Mayorga-Martinez, M. Pumera, Small Methods 2021, 5, 2100230.
X. Arqué, A. Romero-Rivera, F. Feixas, T. Patiño, S. Osuna, S. Sánchez, Nat. Commun. 2019, 10, 2826.
X. Ma, A. Jannasch, U. R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Nano Lett. 2015, 15, 7043.
A. C. Hortelao, C. Simó, M. Guix, S. Guallar-Garrido, E. Julián, D. Vilela, L. Rejc, P. Ramos-Cabrer, U. Cossío, V. Gómez-Vallejo, T. Patiño, J. Llop, S. Sánchez, Sci. Robot. 2021, 6, eabd2823.
S. Song, A. F. Mason, R. A. J. Post, M. De Corato, R. Mestre, N. A. Yewdall, S. Cao, R. W. Van Der Hofstad, S. Sanchez, L. K. E. A. Abdelmohsen, J. C. M. Van Hest, Nat. Commun. 2021, 12, 6897.
M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
S. Kuriakose, K. Sahu, S. A. Khan, A. Tripathi, D. K. Avasthi, S. Mohapatra, Opt. Mater. 2017, 64, 47.
C. Chen, F. Soto, E. Karshalev, J. Li, J. Wang, Adv. Funct. Mater. 2019, 29, 1806290.
M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101178.
Y. Ying, A. M. Pourrahimi, C. L. Manzanares-Palenzuela, F. Novotny, Z. Sofer, M. Pumera, Small 2020, 16, 1902944.
M. Ussia, M. Urso, S. Kment, T. Fialova, K. Klima, K. Dolezelikova, M. Pumera, Small 2022, 18, 2200708.
W. Wang, W. Duan, S. Ahmed, T. E. Mallouk, A. Sen, Nano Today 2013, 8, 531.
W. L. Ong, S. Natarajan, B. Kloostra, G. W. Ho, Nanoscale 2013, 5, 5568.
J. Orozco, B. Jurado-Sánchez, G. Wagner, W. Gao, R. Vazquez-Duhalt, S. Sattayasamitsathit, M. Galarnyk, A. Cortés, D. Saintillan, J. Wang, Langmuir 2014, 30, 5082.
M. Urso, M. Ussia, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101510.
J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 2007, 99, 8.
G. Muñoz-Gil, G. Volpe, M. A. Garcia-March, E. Aghion, A. Argun, C. B. Hong, T. Bland, S. Bo, J. A. Conejero, N. Firbas, Ò. Garibo i Orts, A. Gentili, Z. Huang, J.-H. Jeon, H. Kabbech, Y. Kim, P. Kowalek, D. Krapf, H. Loch-Olszewska, M. A. Lomholt, J.-B. Masson, P. G. Meyer, S. Park, B. Requena, I. Smal, T. Song, J. Szwabiński, S. Thapa, H. Verdier, G. Volpe, et al., Nat. Commun. 2021, 12, 6253.
T. Jesionowski, J. Zdarta, B. Krajewska, Adsorption 2014, 20, 801.
A. Samui, S. K. Sahu, New J. Chem. 2018, 42, 4192.
A. F. Mansor, N. A. Mohidem, W. N. I. Wan Mohd Zawawi, N. S. Othman, S. Endud, H. Mat, J. Sol-Gel Sci. Technol. 2015, 75, 323.
G. Zheng, Y. Cui, Y. Zhou, Z. Jiang, Q. Wang, M. Zhou, P. Wang, Y. Yu, ACS Appl. Mater. Interfaces 2021, 13, 56191.
Z. Yang, J. Qian, C. Shan, H. Li, Y. Yin, B. Pan, Environ. Sci. Technol. 2021, 55, 14494.
Y. Y. Chen, Y. L. Ma, J. Yang, L. Q. Wang, J. M. Lv, C. J. Ren, Chem. Eng. J. 2017, 307, 15.
J. J. López-Peñalver, M. Sánchez-Polo, C. V. Gómez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 2010, 85, 1325.
Y. Ying, J. Plutnar, M. Pumera, Small 2021, 27, 2100294.
C. M. Oral, M. Ussia, M. Pumera, J. Phys. Chem. C 2021, 125, 18040.
M. Urso, M. Pumera, Adv. Funct. Mater. 2022, 32, 2112120.
X. Peng, M. Urso, M. Ussia, M. Pumera, ACS Nano 2022, 16, 7615.
H. J. Jung, R. Koutavarapu, S. Lee, J. H. Kim, H. C. Choi, M. Y. Choi, J. Alloys Compd. 2018, 735, 2058.
Smart micro- and nanorobots for water purification