Ergosterol and polyphenol contents as rapid indicators of orchardgrass silage safety

. 2023 Apr ; 9 (4) : e14940. [epub] 20230329

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37064459
Odkazy

PubMed 37064459
PubMed Central PMC10102439
DOI 10.1016/j.heliyon.2023.e14940
PII: S2405-8440(23)02147-3
Knihovny.cz E-zdroje

The ergosterol (ERG) has been proposed as a potential indicator of fungal contamination, along with polyphenol content analysis to predict silage safety. Despite efforts in controlling fungal growth in silage, mycotoxin co-contamination represents a possible risk for animal and human health. Modern analytical techniques determine a multitude of fungal metabolites contaminating feed. Nonetheless, these methods require sometimes arduous sample pre-treatment, long separation times, and expensive standard compounds to identified contaminants. Thus, the goal of this study was to suggest a rapid analysis of ERG and polyphenol contents to assess silage hygienic quality in ten orchardgrass varieties ensiled without and with biological and chemical additives. The determination of ERG on samples was performed by high-performance liquid chromatography using UV detection and UV/Vis spectrophotometry to determine the polyphenol content. Statistically significant differences (P < 0.05) between varieties, years and silage additives were found. Bepro was the unique variety that did not present ERG in the first cut in 2012. ERG content increased in the first cut in 2013 using biological additives as well as ERG and polyphenol contents in the first cut in 2013 using chemical additives compared with untreated silage. In addition, biological and chemical additives used in this study did not satisfactorily reduce the content of ERG and polyphenols in silage grass. Consequently, our results provide fast information about the progressive fungal contamination of grass silage. To our knowledge, it is the first time that the presence of ERG and polyphenols is determined in ten different orchardgrass varieties treated without and with additives. In general, ERG and polyphenol contents showed to be good indicators of orchardgrass silage safety.

Zobrazit více v PubMed

Li F.H., Ding Z.T., Chen X.Z., Zhang Y.X., Ke W.C., Zhang X., Li Z.Q., Usman S., Guo X.S. The effects of Lactobacillus plantarum with feruloyl esterase-producing ability or high antioxidant activity on the fermentation, chemical composition, and antioxidant status of alfalfa silage. Anim. Feed Sci. Technol. 2021;273 doi: 10.1016/j.anifeedsci.2021.114835. DOI

Xue Z., Liu N., Wang Y., Yang H., Wei Y., Moriel P., Palmer E., Zhang Y. Combining orchardgrass and alfalfa: effects of forage ratios on in vitro rumen degradation and fermentation characteristics of silage compared with hay. Animals. 2020;10:59. doi: 10.3390/ani10010059. PubMed DOI PMC

Jaramillo D.M., Sheridan H., Soder K., Dubeux J.C.B. Enhancing the sustainability of temperate pasture systems through more diverse swards. Agronomy. 2021;11:1912. doi: 10.3390/agronomy11101912. DOI

Mir N., Ahmad S., Bhat S. Dactylis glomerata L. (Cock's foot/Orchard grass): a potential temperate forage grass for cultivation in North Western Himalaya. Adv. Res. 2018;15:1–10. doi: 10.9734/air/2018/42352. DOI

Godde C.M., Mason-D’Croz D., Mayberry D.E., Thornton P.K., Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Secur. 2021;28 doi: 10.1016/j.gfs.2020.100488. PubMed DOI PMC

Bernardes T.F., Daniel J.L.P., Adesogan A.T., McAllister T.A., Drouin P., Nussio L.G., Huhtanen P., Tremblay G.F., Bélanger G., Cai Y. Silage review: unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018;101:4001–4019. doi: 10.3168/jds.2017-13703. PubMed DOI

Ogunade I.M., Martinez-Tuppia C., Queiroz O.C.M., Jiang Y., Drouin P., Wu F., Vyas D., Adesogan A.T. Silage review: mycotoxins in silage: occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018;101:4034–4059. doi: 10.3168/jds.2017-13788. PubMed DOI

Vu V.H., Li X., Wang M., Liu R., Zhang G., Liu W., Xia B., Sun Q. Dynamics of fungal community during silage fermentation of elephant grass (Pennisetum purpureum) produced in northern Vietnam. Asian-Australas J. Anim. Sci. 2019;32:996–1006. doi: 10.5713/ajas.18.0708. PubMed DOI PMC

Lord A.K., Vyas J.M. In: Clinical Immunology: Principles and Practice. Rich R.R., Fleisher T.A., Shearer W.T., Schroeder H.W., Frew A.J., Weyand C.M., editors. Elsevier Ltd; London, UK: 2019. Host defenses to fungal pathogens; pp. 413–424.

Duprez M., Soumagne T., Maitre J., Reboux G., Dalphin J.-C. L’association inhabituelle de deux maladies pulmonaires immunoallergiques : un cas de pneumopathie d’hypersensibilité associée à une aspergillose bronchopulmonaire allergique. Rev. Mal. Respir. 2020;37:80–85. doi: 10.1016/j.rmr.2019.11.642. PubMed DOI

Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L. Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 2018;101:3980–4000. doi: 10.3168/jds.2017-13839. PubMed DOI

Seppälä A., Heikkilä T., Mäki M., Rinne M. Effects of additives on the fermentation and aerobic stability of grass silages and total mixed rations. Grass Forage Sci. 2016;71:458–471. doi: 10.1111/gfs.12221. DOI

Muniroh M.S., Nusaibah S.A., Sariah M. Relationship between Ganoderma ergosterol concentration and basal stem rot disease progress on Elaeis guineensis. Trop. Life Sci. Res. 2020;31:19–43. doi: 10.21315/tlsr2020.31.1.2. PubMed DOI PMC

Jeszka-Skowron M., Oszust K., Zgoła-Grześkowiak A., Frąc M. Quality assessment of goji fruits, cranberries, and raisins using selected markers. Eur. Food Res. Technol. 2018;244:2159–2168. doi: 10.1007/s00217-018-3125-1. DOI

Kadakal Ç., Tepe T.K. Is ergosterol a new microbiological quality parameter in foods or not? Food Rev. Int. 2019;35:155–165. doi: 10.1080/87559129.2018.1482495. DOI

Ropelewska E. Relationship of thermal properties and ergosterol content of barley grains. J. Cereal. Sci. 2018;79:328–334. doi: 10.1016/j.jcs.2017.11.018. DOI

Vella F.M., Calandrelli R., Del Barone A., Guida M., Laratta B. Rapid evaluation of ergosterol to detect yeast contamination in fruit juices. Eur. Food Res. Technol. 2022:1–8. doi: 10.1007/s00217-022-04145-1. DOI

Vella F.M., Laratta B. UV-based evaluation of ergosterol for monitoring the fungal exposure in Italian buffalo farms. FEMS Microbiol. Lett. 2017;364:fnx224. doi: 10.1093/femsle/fnx224. PubMed DOI

Thammawong M., Okadome H., Shiina T., Nakagawa H., Nagashima H., Nakajima T., Kushiro M. Distinct distribution of deoxynivalenol, nivalenol, and ergosterol in Fusarium infected Japanese soft red winter wheat milling fractions. Mycopathologia. 2011;172:323–330. doi: 10.1007/s11046-011-9415-9. PubMed DOI

Stuper-Szablewska K., Perkowski J. Level of contamination with mycobiota and contents of mycotoxins from the group of trichothecenes in grain of wheat, oats, barley, rye and triticale harvested in Poland in 2006–2008. Ann. Agric. Environ. Med. 2017;24:49–55. doi: 10.5604/12321966.1230733. PubMed DOI

Gawrysiak-Witulska M., Wawrzyniak J., Ryniecki A., Perkowski J. Relationship of ergosterol content and fungal contamination and assessment of technological quality of malting barley preserved in a metal silo using the near-ambient method. J. Stored Prod. Res. 2008;44:360–365. doi: 10.1016/j.jspr.2008.03.007. DOI

Le Cocq K., Brown B., Hodgson C.J., McFadzean J., Horrocks C.A., Lee M.R.F., Davies D.R. Application of monoclonal antibodies in quantifying fungal growth dynamics during aerobic spoilage of silage. Microb. Biotechnol. 2020;13:1054–1065. doi: 10.1111/1751-7915.13552. PubMed DOI PMC

Varsamovska K., Zhivikj Z., Topkoska M., Panovska T., Tozi L., Petreska Ivanovska T. Analysis of ergosterol as a potential contaminant in two herbal raw materials. Maced. Pharm. Bull. 2020;66:25–26. doi: 10.33320/maced.pharm.bull.2020.66.03.012. DOI

Kalač P. In: Effects of Forage Feeding on Milk: Bioactive Compounds and Flavor. Kalač P., editor. Academic Press; London, UK: 2017. Desirable compounds; pp. 23–124.

Kadakal çetin, Nizamlıoğlu N., Tepe T., Arısoy S., Tepe F., Batu H. Relation between ergosterol and various mycotoxins in different cheeses. Turk. J. Agric. - Food Sci. Technol. 2020;8:895–900. doi: 10.24925/turjaf.v8i4.895-900.3071. DOI

Nizamlioglu N.M. Relationship between ergosterol and mycotoxins in tomato paste and tomato juice. J. Food Process. Preserv. 2022;46 doi: 10.1111/jfpp.16937. DOI

Chtioui W., Balmas V., Delogu G., Migheli Q., Oufensou S. Bioprospecting phenols as inhibitors of trichothecene-producing Fusarium: sustainable approaches to the management of wheat pathogens. Toxins. 2022;14:72. doi: 10.3390/toxins14020072. PubMed DOI PMC

Zhao Y.-S., Eweys A.S., Zhang J.-Y., Zhu Y., Bai J., Darwesh O.M., Zhang H.-B., Xiao X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants. 2021;10(2004) doi: 10.3390/antiox10122004. PubMed DOI PMC

Jeremic J., Vongluanngam I., Ricci A., Parpinello G.P., Versari A. The oxygen consumption kinetics of commercial oenological tannins in model wine solution and chianti red wine. Molecules. 2020;25:1215. doi: 10.3390/molecules25051215. PubMed DOI PMC

Zhang Y., He S., Simpson B.K. Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Curr. Opin. Food Sci. 2018;19:30–35. doi: 10.1016/j.cofs.2017.12.007. DOI

Correddu F., Lunesu M.F., Buffa G., Atzori A.S., Nudda A., Battacone G., Pulina G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals. 2020;10:131. doi: 10.3390/ani10010131. PubMed DOI PMC

Mazza P.H.S., Jaeger S.M.P.L., Silva F.L., Barbosa A.M., Nascimento T.V.C., Hora D.I.C., da Silva Júnior J.M., Bezerra L.R., Oliveira R.L. Effect of dehydrated residue from acerola (Malpighia emarginata DC.) fruit pulp in lamb diet on intake, ingestive behavior, digestibility, ruminal parameters and N balance. Livest. Sci. 2020;233 doi: 10.1016/j.livsci.2020.103938. DOI

Nascimento T.V.C., Oliveira R.L., Menezes D.R., de Lucena A.R.F., Queiroz M.A.Á., Lima A.G.V.O., Ribeiro R.D.X., Bezerra L.R. Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal. 2021;15 doi: 10.1016/j.animal.2020.100015. PubMed DOI

Alba-Mejía J.E., Skládanka J., Hilgert-Delgado A., Klíma M., Knot P., Doležal P., Horký P. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage. Spanish J. Agric. Res. 2016;14 doi: 10.5424/sjar/2016142-8040. DOI

Skládanka J., Dohnal V., Ježková A. Fibre and ergosterol contents in forage of Arrhenatherum elatius, Dactylis glomerata and Festulolium at the end of the growing season. Czech J. Anim. Sci. 2008;53:320–329. doi: 10.17221/346-CJAS. DOI

Šimek J., Tůma J., Dohnal V., Musil K., Ducaiová Z. Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.) Acta Physiol. Plant. 2016;38:172. doi: 10.1007/s11738-016-2192-9. DOI

Juan C., Mannai A., Ben Salem H., Oueslati S., Berrada H., Juan-García A., Mañes J. Mycotoxins presence in pre- and post-fermented silage from Tunisia. Arab. J. Chem. 2020;13:6753–6761. doi: 10.1016/j.arabjc.2020.06.029. DOI

Tyrolová Y., Bartoň L., Loučka R. Effects of biological and chemical additives on fermentation progress in maize silage. Czech J. Anim. Sci. 2017;62:306–312. doi: 10.17221/67/2016-CJAS. DOI

Japelt R.B., Didion T., Smedsgaard J., Jakobsen J. Seasonal variation of provitamin D2 and vitamin D2 in perennial ryegrass (Lolium perenne L.) J. Agric. Food Chem. 2011;59:10907–10912. doi: 10.1021/jf202503c. PubMed DOI

Skládanka J., Nedělník J., Doležal P., Lindušková H., Nawrath A. Influence of forage species and preservation additives on quality and mycotoxins safety of silages. Acta Fytotech. Zootech. 2012;15:50–54.

Wit M., Ochodzki P., Warzecha R., Jabłońska E., Mirzwa-Mróz E., Mielniczuk E., Wakuliński W. Influence of endosperm starch composition on maize response to Fusarium temperatum Scaufl. & Munaut. Toxins (Basel). 2022;14(200) doi: 10.3390/toxins14030200. PubMed DOI PMC

Wilkinson J.M., Muck R.E. Ensiling in 2050: some challenges and opportunities. Grass Forage Sci. 2019;74:178–187. doi: 10.1111/gfs.12418. DOI

Skládanka J., Dohnal V., Doležal P., Ježková A., Zeman L. Factors affecting the content of ergosterol and zearalenone in selected grass species at the end of the growing season. Acta Vet. Brno. 2009;78:353–360. doi: 10.2754/avb200978020353. DOI

Skládanka J., Nedělník J., Adam V., Doležal P., Moravcová H., Dohnal V. Forage as a primary source of mycotoxins in animal diets. Int. J. Environ. Res. Publ. Health. 2011;8:37–50. doi: 10.3390/ijerph8010037. PubMed DOI PMC

Hossain M.Z., Mari N., Goto T. The relationship between ergosterol and mycotoxin contamination in maize from various countries. Mycotoxin Res. 2015;31:91–99. doi: 10.1007/s12550-015-0219-5. PubMed DOI

Hossain Z. Shinshu University; Matsumoto: 2015. Development, Validation, and Application of Methods for Analysis of Fungal Contamination and Presence of Mycotoxins in Grains.

Srzednicki G., Craske J., Nimmuntavin C., Mantais L.G., Wattananon S. Determination of ergosterol in paddy rice using solid phase extraction. J. Sci. Food Agric. 2004;84:2041–2046. doi: 10.1002/jsfa.1909. DOI

Manni K., Rämö S., Franco M., Rinne M., Huuskonen A. Occurrence of mycotoxins in grass and whole-crop cereal silages—a farm survey. Agriculture. 2022;12:398. doi: 10.3390/agriculture12030398. DOI

Panasiuk L., Jedziniak P., Pietruszka K., Piatkowska M., Bocian L. Frequency and levels of regulated and emerging mycotoxins in silage in Poland. Mycotoxin Res. 2019;35:17–25. doi: 10.1007/s12550-018-0327-0. PubMed DOI PMC

Ratnasari N., Walters M., Tsopmo A. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon. 2017;3 doi: 10.1016/j.heliyon.2017.e00351. PubMed DOI PMC

Suriyaprom S., Mosoni P., Leroy S., Kaewkod T., Desvaux M., Tragoolpua Y. Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants. 2022;11:602. doi: 10.3390/antiox11030602. PubMed DOI PMC

Gessner D.K., Ringseis R., Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017;101:605–628. doi: 10.1111/jpn.12579. PubMed DOI

Lagrange S.P., MacAdam J.W., Villalba J.J. The use of temperate tannin containing forage legumes to improve sustainability in forage–livestock production. Agronomy. 2021;11:2264. doi: 10.3390/agronomy11112264. DOI

Piluzza G., Sulas L., Bullitta S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci. 2014;69:32–48. doi: 10.1111/gfs.12053. DOI

Aboagye I.A., Oba M., Castillo A.R., Koenig K.M., Iwaasa A.D., Beauchemin K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 2018;96:5276–5286. doi: 10.1093/jas/sky352. PubMed DOI PMC

González-Jartín J.M., Ferreiroa V., Rodríguez-Cañás I., Alfonso A., Sainz M.J., Aguín O., Vieytes M.R., Gomes A., Ramos I., Botana L.M. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int. J. Food Microbiol. 2022;365 doi: 10.1016/j.ijfoodmicro.2022.109556. PubMed DOI

Hart E.H., Christofides S.R., Davies T.E., Rees Stevens P., Creevey C.J., Müller C.T., Rogers H.J., Kingston-Smith A.H. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Sci. Rep. 2022;12:4454. doi: 10.1038/s41598-022-08309-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...