Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000444
Advanced Functional Nanorobots
NU21-08-00407
Ministry of Health of the Czech Republic
LL2002
Ministry of Education
21-16084
ERC
CEP - Centrální evidence projektů
PubMed
34369099
PubMed Central
PMC8498868
DOI
10.1002/advs.202101301
Knihovny.cz E-zdroje
- Klíčová slova
- Aqua Sperm micromotors, active bacterial biofilms, biobots, nanorobots, spermatozoa, spermbots,
- MeSH
- biofilmy * MeSH
- biomimetika přístrojové vybavení MeSH
- design vybavení MeSH
- kontaminace zdravotnického vybavení prevence a kontrola MeSH
- mikrotechnologie přístrojové vybavení MeSH
- robotika přístrojové vybavení MeSH
- spermatocyty chemie MeSH
- sumci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microscale self-propelled robots show great promise in the biomedical field and are the focus of many researchers. These tiny devices, which move and navigate by themselves, are typically based on inorganic microstructures that are not biodegradable and potentially toxic, often using toxic fuels or elaborate external energy sources, which limits their real-world applications. One potential solution to these issues is to go back to nature. Here, the authors use high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm. These Aqua Sperm micromotors use water-induced dynein ATPase catalyzed adenosine triphosphate (ATP) degradation as biocompatible fuel to trigger their fast speed and snake-like undulatory locomotion that facilitate biofilm destruction in less than one minute. This efficient biofilm destruction is due to the ultra-fast velocity as well as the head size of Aqua Sperm micromotors being similar to bacteria, which facilitates their entry to and navigation within the biofilm matrix. In addition, the authors demonstrate the real-world application of Aqua Sperm micromotors by destroying biofilms that had colonized medical and laboratory tubing. The implemented system extends the biomedical application of Aqua Sperm micromotors to include hybrid robots for fertilization or cargo tasks.
Zobrazit více v PubMed
Terzopoulou A., James J. D. N., Nicholas D., Chen X.‐Z., Nelson B. J., Pané S., Puigmartí‐Luis J., Chem. Rev. 2020, 120, 11175. PubMed
Soto F., Karshalev E., Zhang F., Fernandez de Avila B. E., Nourhani A., Wang J., Chem. Rev. 2021, 10.1021/acs.chemrev.0c00999. PubMed DOI
Zhou H., Mayorga‐Martinez C. C., Pané S., Zhang L., Pumera M., Chem. Rev. 2021, 4999 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Wang Q. Q., Chan K. F., Schweizer K., Du X. Z., Jin D. D., Yu S. C. H., Nelson B. J., Zhang L., Sci. Adv. 2021, 7, eabe5914. PubMed PMC
Pacheco M., Jurado‐Sánchez B., Escarpa A., Angew. Chem. 2019, 58, 18017. PubMed
Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J., Nano Lett. 2015, 15, 4814. PubMed
Dong M., Wang X., Chen X.‐Z., Mushtaq F., Deng S., Zhu C., Torlakcik H., Terzopoulou A., Qin X.‐H., Xiao X., Puigmartí‐Luis J., Choi H., Pêgo A. P., Shen Q.‐D., Nelson B. J., Pané S., Adv. Funct. Mater. 2020, 30, 1910323.
Zhang Y., Yuan K., Zhang L., Adv. Mater. Technol. 2019, 4, 1800636.
Pacheco M., López M. Á., Jurado‐Sánchez B., Escarpa A., Anal. Bioanal. Chem. 2019, 411, 6561. PubMed
Karshalev E., Esteban‐Fernandez de Avíla B., Wang J., J. Am. Chem. Soc. 2018, 140, 3810. PubMed
Mundaca‐Uribe R., Esteban‐Fernández de Ávila B., Holay M., Venugopalan P. L., Nguyen B., Zhou J., Abbas A., Fang R. H., Zhang L., Wang J., Adv. Healthcare Mater. 2020, 9, 2000900. PubMed
Tang S., Zhang F., Gong H., Wei F., Zhuang J., Karshalev E., Esteban‐Fernández de Ávila B., Huang C., Zhou Z., Li Z., Yin L., Dong H., Fang R. H., Zhang X., Zhang L., Wang J., Sci. Robot. 2020, 5, eaba6137. PubMed
Esteban‐Fernández de Ávila B., Lopez‐Ramirez M. A., Mundaca‐Uribe R., Wei X., Ramírez‐Herrera D. E., Karshalev E., Nguyen B., Fang R. H., Zhang L., Wang J., Adv. Mater. 2020, 32, 2000091. PubMed
Kong L., Rosli N. F., H. L. C., Guan J., Pumera M., Bull. Chem. Soc. Jpn. 2019, 92, 1754.
Zhou M., Hou T., Li J., Yu S., Xu Z., Yin M., Wang J., Wang X., ACS Nano 2019, 13, 1324. PubMed
Gu Y., Sattayasamitsathit S., Kaufmann K., Vazquez‐Duhalt R., Gao W., Wang C., Wang J., Chem. Commun. 2013, 49, 7307. PubMed
Guix M., Mayorga‐Martinez C. C., A. M., Chem. Rev. 2014, 114, 6285. PubMed
Singh A. V., Ansari M. H. D., Mahajan M., Srivastava S., Kashyap S., Dwivedi P., Pandit V., Katha U., Micromachines 2020, 11, 448. PubMed PMC
Palagi, S. , Jager, E. W. , Mazzolai, B. , Beccai L., Bioinspir. Biomim. 2013, 4, 046004. PubMed
Xu H., Medina‐Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O. G., ACS Nano 2018, 12, 327. PubMed
Xu H., Medina‐Sánchez M., Maitz M. F., Werner C., Schmidt O. G., ACS Nano 2020, 14, 2982. PubMed
Xu H., Medina‐Sánchez M., Schmidt O. G., Angew. Chem. 2020, 24, 15139. PubMed PMC
Hall‐Stoodley L., Costerton J.; W., Stoodley P., Nat. Rev. Microbiol. 2004, 2, 95. PubMed
Kostakioti M., Hadjifrangiskou M., Hultgren S. J., Perspect. Med. 2013, 3, a010306. PubMed PMC
Dong Y., Wang L., Yuan K., Ji F. T., Gao J. H., Zhang Z. F., Du X. Z., Tian Y., Wang Q., Zhang L., ACS Nano 2021, 15, 5056. PubMed
Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M., Cell Rep. Phys. Sci. 2020, 1, 100181.
Yuan K., Jurado‐Sánchez B., Escarpa A., Angew. Chem. 2021, 133, 4965. PubMed
Lamar M. O., Nacev A., Hilaman R., Stepanov P. Y., Chowdhury S., Jafari S., Hausfeld J., Karlsson A. J., Shirtliff M. E., Shapiro B., Weinberg I. N., J. Magn. Magn. Mater. 2017, 427, 81.
Costerton J. W., Stewart P. S., Greenberg E. P., Science 1999, 284, 1318. PubMed
Pericolini E., Colombari B., Ferretti G., Iseppi R., Ardizzoni A., Girardis M., Sala A., Peppoloni S., Blasi E., BMC Microbiol. 2018, 18, 84. PubMed PMC
Moormeier D. E., Bayles K. W., Mol. Microbiol. 2017, 104, 365. PubMed PMC
Willett J. L. E., Ji M. M., Dunny G. M., NPJ Biofilms and Microbiomes 2019, 5, 23. PubMed PMC
Tinkir M., Memiş D., Cheng Y., Xin M., Rodina M., Gela D., Tučková V., Linhart O., Fish. Physiol. Biochem. 2021, 47, 163. PubMed
Mansour N., Lahnsteiner F., Patzner R. A., J. Fish Biol. 2002, 60, 545.
Gronczewska J., Niedźwiecka N., Grzyb K., Fish Physiol. Biochem. 2019, 45, 1615. PubMed PMC
Hogendorn H., Aquaculture 1979, 17, 323.
Viveiros A. T. M., Komen J., in Methods in Reproductive Aquaculture: Marine and Freshwater Species, (Eds., Cabrita E., Robles V., Herráez P.) CRC Press, Boca Raton: 2009; pp. 403–407.
Brijs J., Sundell E., Hjelmstedt P., Berg C., Senčić I., Sandblom E., Axelsson M., Lines J., Bouwsema J., Ellis M., Saxer A., Gräns A., Aquaculture 2021, 531, 735887.
C. REPUBLIC, A. No, 246/1992 In: Collection of Laws of the Czech Republic, 1992, 28, p.p. 666–692. ISSN: 1211.
Vuthiphandchai V., Thadsri I., Nimrat S., Aquaculture 2009, 296, 58.
Beirão J., Boulais M., Gallego V., O'Brien V. J. K., Peixoto S., Robeck T. R., Cabrita E., Theriogenology 2019, 133, 161. PubMed