• This record comes from PubMed

Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme

. 2015 ; 10 (6) : e0128700. [epub] 20150603

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.

See more in PubMed

Glover SW, Colson C. Genetics of host-controlled restriction and modification in Escherichia coli. Genet Res. 1969;13: 227–240. PubMed

Bickle TA. The ATP-dependent restriction enzymes In: Linn SM, Lloyd RS, Roberts RJ, editors. Nucleases. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1993. pp. 89–109.

Redaschi N, Bickle TA. DNA restriction and modification systems In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE, editors. Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. Washington, D.C.: ASM Press; 1996. pp. 773–781.

Yuan R, Hamilton DL, Burckhardt J. DNA translocation by the restriction enzyme from E. coli K. Cell. 1980;20: 237–244. PubMed

Endlich B, Linn S. The DNA restriction endonuclease of Escherichia coli B. II. Further studies of the structure of DNA intermediates and products. J Biol Chem. 1985;260: 5729–5738. PubMed

Studier FW, Bandyopadhyay PK. Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci USA. 1988;85: 4677–4681. PubMed PMC

Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: Enzymes genes and genomes. Nucleic Acids Res. 2010;38: D234–D236. 10.1093/nar/gkp874 PubMed DOI PMC

Roberts GA, Cooper LP, White JH, Su TJ, Zipprich JT, Geary P, et al. An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme. Nucleic Acids Res. 2011;39: 7667–7676. 10.1093/nar/gkr480 PubMed DOI PMC

Waldron DE, Lindsay JA. Sau1: A novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol. 2006:188: 5578–5585. PubMed PMC

Arber W, Dussoix D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol. 1962;5: 18–36. PubMed

Janscak P, Abadjieva A, Firman K. The Type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. J Mol Biol. 1996;257: 977–991. PubMed

Dryden DTF, Cooper LP, Thorpe PH, Byron O. The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochem. 1997;36: 1065–1076. PubMed

Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014;42: 20–44. 10.1093/nar/gkt847 PubMed DOI PMC

van Noort J, van der Heijden T, Dutta CF, Firman K, Dekker C. Initiation of translocation by Type I restriction-modification enzymes is associated with a short DNA extrusion. Nucleic Acids Res. 2004;32: 6540–6547. PubMed PMC

Kennaway CK, Taylor JE, Song CF, Potrzebowski W, Nicholson W, White JH, et al. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes Dev. 2012;26: 92–104. 10.1101/gad.179085.111 PubMed DOI PMC

Dreier J, MacWilliams MP, Bickle TA. DNA cleavage by the type IC restriction- modification enzyme EcoR124II. J Mol Biol. 1996;264: 722–733. PubMed

Szczelkun MD, Dillingham MS, Janscak P, Firman K, Halford SE. Repercussions of DNA tracking by the type Ic restriction endonuclease EcoR124I on linear, circular and catenated substrates. EMBO J. 1996;15: 6335–6347. PubMed PMC

Szczelkun MD, Janscak P, Firman K, Halford SE. Selection of non-specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I. J Mol Biol. 1997;271: 112–123. PubMed

Janscak P, Bickle TA. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI. J Mol Biol. 2000;295: 1089–1099. PubMed

Janscak P, MacWilliams MP, Sandmeier U, Nagaraja V, Bickle TA. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO J. 1999;18: 2638–2647. PubMed PMC

Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res. 2009;37: 3531–3544. 10.1093/nar/gkp214 PubMed DOI PMC

Lapkouski M, Panjikar S, Janscak P, Kuta Smatanova I, Carey J, Ettrich R, et al. Structure of the motor subunit of Type I restriction-modification complex EcoR124I. Nat. Struct Mol Biol. 2009;16: 94–95. 10.1038/nsmb.1523 PubMed DOI

Aravind L, Makarova KS, Koonin EV. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 2000;28: 3417–3432. PubMed PMC

Bujnicki JM, Rychlewski L. Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles, J Mol Microbiol Biotechnol. 2001;3: 69–72. PubMed

Obarska–Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG. HsdR subunit of the type I restriction–modification enzyme EcoR124I: biophysical characterisation and structural modelling. J Mol Biol. 2008;376: 438–445. 10.1016/j.jmb.2007.11.024 PubMed DOI PMC

Sisakova E, Stanley LK, Weiserova M, Szczelkun MD. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I. Nucleic Acids Res. 2008;36: 3939–3949. 10.1093/nar/gkn333 PubMed DOI PMC

Chang HW, Julin DA. Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J Biol Chem. 2001;276: 46004–46010. PubMed

Yu M, Souaya J, Julin DA. The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli. Proc Natl Acad Sci USA. 1998;95: 981–986. PubMed PMC

Murray NE, Daniel AS, Cowan GM, Sharp PM. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol Microbiol. 1993;9: 133–143. PubMed

Gorbalenya AE, Koonin EV. Endonuclease (R) subunits of type-I and type-III restriction–modification enzymes contain a helicase-like domain. FEBS Lett. 1991;291: 277–281. PubMed

McClelland SE, Szczelkun MD. The Type I and III Restriction Endonuclease: Structural Elements in Molecular Motors that Process DNA In: Pingound A, editor. Restriction Enzymes, Nucleic Acids and Molecular Biology. Springer Verlag, Berlin, Germany; 2004. Vol. 14, pp. 111–135.

Sinha D, Shamayeva K, Ramasubramani V, Reha D, Bialevich V, Khabiri M, et al. Interdomain communication in the endonuclease/motor subunit of Type I restriction-modification enzyme EcoR124I Journal of Mol Model. 2014;20: 2334 10.1007/s00894-014-2334-1 PubMed DOI

Sisakova E, Weiserova M, Dekker C, Seidel R, Szcezelkun MD. The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. J Mol Biol. 2008;384: 1273–1286. 10.1016/j.jmb.2008.10.017 PubMed DOI PMC

Janscak P, Dryden DTF, Firman K. Analysis of the subunit assembly of the type IC restriction-modification enzyme EcoR124I. Nucleic Acids Res. 1998;26: 4439–4445. PubMed PMC

Seidel R, Bloom JGP, Dekker C, Szczelkun MD. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J. 2008;27: 1388–1398. 10.1038/emboj.2008.69 PubMed DOI PMC

Randerath K, Randerath E. Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-celluslose thin layers. J Chromatogr. 1964;16: 111–125. PubMed

Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair. 2012;11: 789–798. 10.1016/j.dnarep.2012.05.007 PubMed DOI PMC

Firman K, Szczelkun MD. Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement. EMBO J. 2000;19: 2094–2102. PubMed PMC

Stanley LK, Szczelkun MD. Direct and random routing of a molecular motor protein at a DNA junction. Nucleic Acids Res. 2006;34: 4387–4394. PubMed PMC

Barcus VA, Titheradge AJ, Murray NE. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics. 1995;140: 1187–1197. PubMed PMC

Bickle TA, Kruger DH. Biology of DNA restriction. Microbiol Rev. 1993;57: 434–450. PubMed PMC

Titheradge AJB, Ternent D, Murray NE. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol Microbiol. 1996;22: 437–447. PubMed

Janscak P, Sandmeier U, Bickle TA. Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme EcoAI uncouple the DNA translocation and DNA cleavage activities of the enzyme. Nucleic Acids Res. 1999;27: 2638–2643. PubMed PMC

Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DTF. On the structure and operation of type I DNA restriction enzymes. J Mol Biol. 1999;290: 565–579. PubMed

Handa N, Yanga L, Dillingham MS, Kobayashi I, Wigley DB, Kowalczykowski SC. Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme. Proc Natl Acad Sci US A. 2012;109: 8901–8906. 10.1073/pnas.1206076109 PubMed DOI PMC

Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33: 103–119. PubMed

Patel J, Taylor I, Dutta CF, Kneale G, Firman K. High-level expression of the cloned genes encoding the subunits of and intact DNA methylase, M.EcoR124. Gene. 1992;112: 21–27. PubMed

Jacob F, Wollman EL. Etude génétique d'un bactériophage tempéré d'Escherichia coli. III. Effet du rayonnement ultraviolet sur la recombinaison génétique. Ann Inst Pasteur. 1954;87: 653–673. PubMed

Hubacek J, Holubova I, Weiserova M. The effect of recA mutation on the expression of EcoKI and EcoR124I hsd genes cloned in a multicopy plasmid. Folia Microbiol. 1998;43: 353–359. PubMed

Taylor I, Patel J, Firman K, Kneale G. Purification and biochemical characterisation of the EcoR124 Type I modification methylase Nucleic Acids Res. 1992;20: 179–186. PubMed PMC

Lapkouski M, Panjikar S, Smatanova IK, Csefalvay E. Purification, crystallization and preliminary X-ray analysis of the HsdR subunit of the EcoR124I endonuclease from Escherichia coli. Acta Cryst. 2007;F63: 582–585. PubMed PMC

Leslie AGW. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESFEACMB Newsletter on Protein Crystallography. 1992. Vol. 26.

Kabsch W. Integration, scaling, space-group assignment and post refinement. Acta Cryst. 2010;D66: 133–144. PubMed PMC

Matthews BW. Solvent content of protein crystals. J Mol Biol. 1968;33: 491–497. PubMed

Vagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr. 1997;30: 1022–1025.

Cowtan K, Main P. Miscellaneous algorithms for density modification. Acta Cryst. 1998;D54: 487–493. PubMed

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst. 1997;D53: 240–255. PubMed

Painter J, Merritt EA. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. J Appl Crystallogr. 2006;39: 109–111. PubMed

Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS. Tucker PA. Auto-Rickshaw—An automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Cryst. 2005;D61: 449–457. PubMed

Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, et al. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination Acta Cryst. 1998;D54: 905–921. PubMed

Chan KM, Delfert D, Junger KD. A direct colorimetric assay for Ca2- stimulated ATPase activity. Anal Biochem. 1986;157: 375–380. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...