pHluorin-assisted expression, purification, crystallization and X-ray diffraction data analysis of the C-terminal domain of the HsdR subunit of the Escherichia coli type I restriction-modification system EcoR124I
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27599856
PubMed Central
PMC5012205
DOI
10.1107/s2053230x16011626
PII: S2053230X16011626
Knihovny.cz E-zdroje
- Klíčová slova
- EcoR124I, Escherichia coli, GFP, HsdR, pHluorin, restriction-modification system,
- MeSH
- difrakce rentgenového záření MeSH
- Escherichia coli chemie enzymologie genetika MeSH
- exprese genu MeSH
- klonování DNA MeSH
- krystalizace MeSH
- krystalografie rentgenová MeSH
- plazmidy chemie metabolismus MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- proteiny z Escherichia coli chemie genetika metabolismus MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- restrikční endonukleasy typu I chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- zelené fluorescenční proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endodeoxyribonuclease EcoR124I MeSH Prohlížeč
- HsdR protein, E coli MeSH Prohlížeč
- PHluorin MeSH Prohlížeč
- podjednotky proteinů MeSH
- proteiny z Escherichia coli MeSH
- rekombinantní fúzní proteiny MeSH
- restrikční endonukleasy typu I MeSH
- zelené fluorescenční proteiny MeSH
The HsdR subunit of the type I restriction-modification system EcoR124I is responsible for the translocation as well as the restriction activity of the whole complex consisting of the HsdR, HsdM and HsdS subunits, and while crystal structures are available for the wild type and several mutants, the C-terminal domain comprising approximately 150 residues was not resolved in any of these structures. Here, three fusion constructs with the GFP variant pHluorin developed to overexpress, purify and crystallize the C-terminal domain of HsdR are reported. The shortest of the three encompassed HsdR residues 887-1038 and yielded crystals that belonged to the orthorhombic space group C2221, with unit-cell parameters a = 83.42, b = 176.58, c = 126.03 Å, α = β = γ = 90.00° and two molecules in the asymmetric unit (VM = 2.55 Å(3) Da(-1), solvent content 50.47%). X-ray diffraction data were collected to a resolution of 2.45 Å.
Zobrazit více v PubMed
Csefalvay, E., Lapkouski, M., Guzanova, A., Csefalvay, L., Baikova, T., Shevelev, I., Bialevich, V., Shamayeva, K., Janscak, P., Kuta Smatanova, I., Panjikar, S., Carey, J., Weiserova, M. & Ettrich, R. (2015). PLoS One, 10, e0128700. PubMed PMC
Davies, G. P., Martin, I., Sturrock, S. S., Cronshaw, A., Murray, N. E. & Dryden, D. T. F. (1999). J. Mol. Biol. 290, 565–579. PubMed
Diederichs, K. & Karplus, P. A. (1997). Nature Struct. Biol. 4, 269–275. PubMed
Dryden, D. T. F., Murray, N. E. & Rao, D. N. (2001). Nucleic Acids Res. 29, 3728–3741. PubMed PMC
Horiuchi, K. & Zinder, N. D. (1972). Proc. Natl Acad. Sci. USA, 69, 3220–3224. PubMed PMC
Janscak, P., Abadjieva, A. & Firman, K. (1996). J. Mol. Biol. 257, 977–991. PubMed
Kabsch, W. (2010). Acta Cryst. D66, 133–144. PubMed PMC
Kobe, B., Ve, T. & Williams, S. J. (2015). Acta Cryst. F71, 861–869. PubMed PMC
Lapkouski, M., Panjikar, S., Janscak, P., Kuta Smatanova, I., Carey, J., Ettrich, R. & Csefalvay, E. (2009). Nature Struct. Mol. Biol. 16, 94–95. PubMed
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A. & Wilson, G. G. (2014). Nucleic Acids Res. 42, 20–44. PubMed PMC
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. PubMed
Miesenböck, G., De Angelis, D. A. & Rothman, J. E. (1998). Nature (London), 394, 192–195. PubMed
Obarska-Kosinska, A., Taylor, J. E., Callow, P., Orlowski, J., Bujnicki, J. M. & Kneale, G. G. (2008). J. Mol. Biol. 376, 438–452. PubMed PMC
Qi, D. & Scholthof, K. B. (2008). J. Virol. Methods, 149, 85–90. PubMed
Seidel, R., Bloom, J. G., Dekker, C. & Szczelkun, M. D. (2008). EMBO J. 27, 1388–1398. PubMed PMC
Smyth, D. R., Mrozkiewicz, M. K., McGrath, W. J., Listwan, P. & Kobe, B. (2003). Protein Sci. 12, 1313–1322. PubMed PMC
Thor, J. J. van, Georgiev, G. Y., Towrie, M. & Sage, J. T. (2005). J. Biol. Chem. 280, 33652–33659. PubMed
Uyen, N. T., Park, S.-Y., Choi, J.-W., Lee, H.-J., Nishi, K. & Kim, J.-S. (2009). Nucleic Acids Res. 37, 6960–6969. PubMed PMC
Weiss, M. S. & Hilgenfeld, R. (1997). J. Appl. Cryst. 30, 203–205.
Weiss, M. S., Metzner, H. J. & Hilgenfeld, R. (1998). FEBS Lett. 423, 291–296. PubMed
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
Yanisch-Perron, C., Vieira, J. & Messing, J. (1985). Gene, 33, 103–119. PubMed
Youell, J. & Firman, K. (2008). Microbiol. Mol. Biol. Rev. 72, 365–377. PubMed PMC