Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
- MeSH
- adenosintrifosfát chemie metabolismus MeSH
- aminokyselinové motivy MeSH
- DNA chemie metabolismus MeSH
- fenotyp MeSH
- genotyp MeSH
- hydrolýza MeSH
- katalýza MeSH
- kinetika MeSH
- konzervovaná sekvence MeSH
- kvantová teorie MeSH
- lysin MeSH
- mutace MeSH
- mutageneze cílená MeSH
- restrikční endonukleasy typu I chemie genetika metabolismus MeSH
- simulace molekulární dynamiky MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adenosintrifosfát MeSH
- DNA MeSH
- endodeoxyribonuclease EcoR124I MeSH Prohlížeč
- lysin MeSH
- restrikční endonukleasy typu I MeSH
Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.
Zobrazit více v PubMed
J Comput Chem. 2005 Dec;26(16):1701-18 PubMed
J Mol Biol. 1999 Jul 9;290(2):565-79 PubMed
Proteins. 1993 Dec;17(4):412-25 PubMed
Proteins. 2002 May 15;47(3):393-402 PubMed
J Mol Biol. 1996 Apr 19;257(5):977-91 PubMed
Nucleic Acids Res. 2008 Jul;36(12):3939-49 PubMed
Gene. 1992 Mar 1;112(1):21-7 PubMed
Proteins. 2006 Aug 15;64(3):559-74 PubMed
Proc Natl Acad Sci U S A. 1988 Jul;85(13):4677-81 PubMed
J Chem Phys. 2007 Jan 7;126(1):014101 PubMed
Nucleic Acids Res. 2007;35(7):2227-37 PubMed
J Comput Chem. 2004 Jul 15;25(9):1157-74 PubMed
Anal Biochem. 1986 Sep;157(2):375-80 PubMed
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6665-70 PubMed
Nucleic Acids Res. 2009 Nov;37(20):6960-9 PubMed
Nucleic Acids Res. 1992 Jan 25;20(2):179-86 PubMed
Bioinformatics. 2013 Apr 1;29(7):845-54 PubMed
J Mol Biol. 2008 Dec 31;384(5):1273-86 PubMed
J Mol Biol. 2008 Feb 15;376(2):438-52 PubMed
Gene. 1985;33(1):103-19 PubMed
J Chem Phys. 2010 Apr 21;132(15):154104 PubMed
Proteins. 1997 Mar;27(3):425-37 PubMed
FEBS Lett. 1991 Oct 21;291(2):277-81 PubMed
Proteins. 1998 Feb 1;30(2):144-54 PubMed
Nat Struct Mol Biol. 2009 Jan;16(1):94-5 PubMed
Genetics. 1965 Nov;52(5):1043-50 PubMed
Proteins. 2006 Nov 15;65(3):712-25 PubMed
Microbiology (Reading). 2002 Jan;148(Pt 1):3-20 PubMed
Ann Inst Pasteur (Paris). 1954 Dec;87(6):653-73 PubMed
Biochem Biophys Res Commun. 2004 Jun 25;319(2):375-80 PubMed
Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme
Molecular dynamics comparison of E. coli WrbA apoprotein and holoprotein