Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition

. 2022 Feb 28 ; 15 (5) : . [epub] 20220228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269032

Grantová podpora
null Foundation for Aalto University Science and Technology
201706040062 China Scholarship Council

A non-equiatomic AlCoCr0.75Cu0.5FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr0.75Cu0.5FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger Ms. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.

Zobrazit více v PubMed

Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off. Nature. 2016;534:227–230. doi: 10.1038/nature17981. PubMed DOI

Huang P.-K., Yeh J.-W., Shun T.-T., Chen S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004;6:74–78. doi: 10.1002/adem.200300507. DOI

Nene S.S., Frank M., Liu K., Sinha S., Mishra R.S., McWilliams B.A., Cho K.C. Corrosion-Resistant High Entropy Alloy with High Strength and Ductility. Scr. Mater. 2019;166:168–172. doi: 10.1016/j.scriptamat.2019.03.028. DOI

Kumar N.A.P.K., Li C., Leonard K.J., Bei H., Zinkle S.J. Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation. Acta Mater. 2016;113:230–244. doi: 10.1016/j.actamat.2016.05.007. DOI

Li C., Hu X., Yang T., Kumar N.K., Wirth B.D., Zinkle S.J. Neutron Irradiation Response of a Co-Free High Entropy Alloy. J. Nucl. Mater. 2019;527:151838. doi: 10.1016/j.jnucmat.2019.151838. DOI

Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Tang Z., Gao M.C., Diao H., Yang T., Liu J., Zuo T., Zhang Y., Lu Z., Cheng Y., Zhang Y., et al. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. JOM. 2013;65:1848–1858. doi: 10.1007/s11837-013-0776-z. DOI

Tong C.-J., Chen Y.-L., Yeh J.-W., Lin S.-J., Chen S.-K., Shun T.-T., Tsau C.-H., Chang S.-Y. Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Met. Mat. Trans. A. 2005;36:881–893. doi: 10.1007/s11661-005-0283-0. DOI

Zhou Y.J., Zhang Y., Wang F.J., Chen G.L. Phase Transformation Induced by Lattice Distortion in Multiprincipal Component CoCrFeNiCuxAl1−x Solid-Solution Alloys. Appl. Phys. Lett. 2008;92:241917. doi: 10.1063/1.2938690. DOI

Kuznetsov A.V., Shaysultanov D.G., Stepanov N.D., Salishchev G.A., Senkov O.N. Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in as-Cast and Wrought Conditions. Mater. Sci. Eng. A. 2012;533:107–118. doi: 10.1016/j.msea.2011.11.045. DOI

Tung C.-C., Yeh J.-W., Shun T., Chen S.-K., Huang Y.-S., Chen H.-C. On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System. Mater. Lett. 2007;61:1–5. doi: 10.1016/j.matlet.2006.03.140. DOI

Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J. Decomposition in Multi-Component AlCoCrCuFeNi High-Entropy Alloy. Acta Mater. 2011;59:182–190. doi: 10.1016/j.actamat.2010.09.023. DOI

Ivchenko M.V., Pushin V.G., Uksusnikov A.N., Wanderka N., Kourov N.I. Specific Features of Cast High-Entropy AlCrFeCoNiCu Alloys Produced by Ultrarapid Quenching from the Melt. Phys. Met. Metallogr. 2013;114:503–513. doi: 10.1134/S0031918X13060057. DOI

Lavernia E.J., Srivatsan T.S. The Rapid Solidification Processing of Materials: Science, Principles, Technology, Advances, and Applications. J. Mater. Sci. 2010;45:287–325. doi: 10.1007/s10853-009-3995-5. DOI

Kok Y., Tan X.P., Wang P., Nai M.L.S., Loh N.H., Liu E., Tor S.B. Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review. Mater. Des. 2018;139:565–586. doi: 10.1016/j.matdes.2017.11.021. DOI

Brif Y., Thomas M., Todd I. The Use of High-Entropy Alloys in Additive Manufacturing. Scr. Mater. 2015;99:93–96. doi: 10.1016/j.scriptamat.2014.11.037. DOI

Joseph J., Jarvis T., Wu X., Stanford N., Hodgson P., Fabijanic D.M. Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted Al x CoCrFeNi High Entropy Alloys. Mater. Sci. Eng. A. 2015;633:184–193. doi: 10.1016/j.msea.2015.02.072. DOI

Sun Z., Tan X., Wang C., Descoins M., Mangelinck D., Tor S.B., Jägle E.A., Zaefferer S., Raabe D. Reducing Hot Tearing by Grain Boundary Segregation Engineering in Additive Manufacturing: Example of an AlxCoCrFeNi High-Entropy Alloy. Acta Mater. 2021;204:116505. doi: 10.1016/j.actamat.2020.116505. DOI

Wang Y., Li R., Niu P., Zhang Z., Yuan T., Yuan J., Li K. Microstructures and Properties of Equimolar AlCoCrCuFeNi High-Entropy Alloy Additively Manufactured by Selective Laser Melting. Intermetallics. 2020;120:106746. doi: 10.1016/j.intermet.2020.106746. DOI

Jung H.Y., Peter N.J., Gärtner E., Dehm G., Uhlenwinkel V., Jägle E.A. Bulk Nanostructured AlCoCrFeMnNi Chemically Complex Alloy Synthesized by Laser-Powder Bed Fusion. Addit. Manuf. 2020;35:101337. doi: 10.1016/j.addma.2020.101337. DOI

Guan S., Solberg K., Wan D., Berto F., Welo T., Yue T.M., Chan K.C. Formation of Fully Equiaxed Grain Microstructure in Additively Manufactured AlCoCrFeNiTi0.5 High Entropy Alloy. Mater. Des. 2019;184:108202. doi: 10.1016/j.matdes.2019.108202. DOI

Scipioni Bertoli U., Guss G., Wu S., Matthews M.J., Schoenung J.M. In-Situ Characterization of Laser-Powder Interaction and Cooling Rates through High-Speed Imaging of Powder Bed Fusion Additive Manufacturing. Mater. Des. 2017;135:385–396. doi: 10.1016/j.matdes.2017.09.044. DOI

Hooper P.A. Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion. Addit. Manuf. 2018;22:548–559. doi: 10.1016/j.addma.2018.05.032. DOI

Kao Y.-F., Chen S.-K., Chen T.-J., Chu P.-C., Yeh J.-W., Lin S.-J. Electrical, Magnetic, and Hall Properties of AlxCoCrFeNi High-Entropy Alloys. J. Alloys Compd. 2011;509:1607–1614. doi: 10.1016/j.jallcom.2010.10.210. DOI

Borkar T., Chaudhary V., Gwalani B., Choudhuri D., Mikler C.V., Soni V., Alam T., Ramanujan R.V., Banerjee R. A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–XFeNi. Adv. Eng. Mater. 2017;19:1700048. doi: 10.1002/adem.201700048. DOI

Zuo T., Gao M.C., Ouyang L., Yang X., Cheng Y., Feng R., Chen S., Liaw P.K., Hawk J.A., Zhang Y. Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) High Entropy Alloys by Metal Doping. Acta Mater. 2017;130:10–18. doi: 10.1016/j.actamat.2017.03.013. DOI

Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., Wang Y.C., Zhang Q.J. Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy. J. Alloys Compd. 2010;502:295–299. doi: 10.1016/j.jallcom.2009.11.104. DOI

Zhang Y., Chen Z., Cao D., Zhang J., Zhang P., Tao Q., Yang X. Concurrence of Spinodal Decomposition and Nano-Phase Precipitation in a Multi-Component AlCoCrCuFeNi High-Entropy Alloy. J. Mater. Res. Technol. 2019;8:726–736. doi: 10.1016/j.jmrt.2018.04.020. DOI

Peter N.J., Duarte M.J., Liebscher C.H., Srivastava V.C., Uhlenwinkel V., Jägle E.A., Dehm G. Early Stage Phase Separation of AlCoCr0.75Cu0.5FeNi High-Entropy Powder at the Nanoscale. J. Alloys Compd. 2020;820:153149. doi: 10.1016/j.jallcom.2019.153149. DOI

Cullity B.D., Graham C.D. Introduction to Magnetic Materials. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Singh S., Wanderka N., Kiefer K., Siemensmeyer K., Banhart J. Effect of Decomposition of the Cr–Fe–Co Rich Phase of AlCoCrCuFeNi High Entropy Alloy on Magnetic Properties. Ultramicroscopy. 2011;111:619–622. doi: 10.1016/j.ultramic.2010.12.001. PubMed DOI

Rao Z., Dutta B., Körmann F., Lu W., Zhou X., Liu C., Silva A.K., Wiedwald U., Spasova M., Farle M., et al. Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition. Adv. Funct. Mater. 2021;31:2007668. doi: 10.1002/adfm.202007668. DOI

Srivastava V.C., Mandal G.K., Ciftci N., Uhlenwinkel V., Mädler L. Processing of High-Entropy AlCoCr0.75Cu0.5FeNi Alloy by Spray Forming. J. Mater. Eng. Perform. 2017;26:5906–5920. doi: 10.1007/s11665-017-3071-2. DOI

Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.-P. A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–3312. doi: 10.1016/j.actamat.2010.02.004. DOI

McMahon C., Soe B., Loeb A., Vemulkar A., Ferry M., Bassman L. Boundary Identification in EBSD Data with a Generalization of Fast Multiscale Clustering. Ultramicroscopy. 2013;133:16–25. doi: 10.1016/j.ultramic.2013.04.009. PubMed DOI

Lehto P., Remes H., Saukkonen T., Hänninen H., Romanoff J. Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel. Mater. Sci. Eng. A. 2014;592:28–39. doi: 10.1016/j.msea.2013.10.094. DOI

Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization; Geneva, Switzerland: 2018. ISO Standard 6507-1: 2018.

Huang S., Sing S.L., de Looze G., Wilson R., Yeong W.Y. Laser Powder Bed Fusion of Titanium-Tantalum Alloys: Compositions and Designs for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020;108:103775. doi: 10.1016/j.jmbbm.2020.103775. PubMed DOI

Luo S., Gao P., Yu H., Yang J., Wang Z., Zeng X. Selective Laser Melting of an Equiatomic AlCrCuFeNi High-Entropy Alloy: Processability, Non-Equilibrium Microstructure and Mechanical Behavior. J. Alloys Compd. 2019;771:387–397. doi: 10.1016/j.jallcom.2018.08.290. DOI

Zhang H., Zhu H., Nie X., Yin J., Hu Z., Zeng X. Effect of Zirconium Addition on Crack, Microstructure and Mechanical Behavior of Selective Laser Melted Al-Cu-Mg Alloy. Scr. Mater. 2017;134:6–10. doi: 10.1016/j.scriptamat.2017.02.036. DOI

Liu P., Wang Z., Xiao Y., Horstemeyer M.F., Cui X., Chen L. Insight into the Mechanisms of Columnar to Equiaxed Grain Transition during Metallic Additive Manufacturing. Addit. Manuf. 2019;26:22–29. doi: 10.1016/j.addma.2018.12.019. DOI

Unnikrishnan R., Northover S.M., Jazaeri H., Bouchard P.J. Investigating Plastic Deformation around a Reheat-Crack in a 316H Austenitic Stainless Steel Weldment by Misorientation Mapping. Procedia Struct. Integr. 2016;2:3501–3507. doi: 10.1016/j.prostr.2016.06.436. DOI

Yamanaka K., Saito W., Mori M., Matsumoto H., Sato S., Chiba A. Abnormal Grain Growth in Commercially Pure Titanium during Additive Manufacturing with Electron Beam Melting. Materialia. 2019;6:100281. doi: 10.1016/j.mtla.2019.100281. DOI

Yang X., Ge Y., Lehtonen J., Hannula S.-P. Hierarchical Microstructure of Laser Powder Bed Fusion Produced Face-Centered-Cubic-Structured Equiatomic CrFeNiMn Multicomponent Alloy. Materials. 2020;13:4498. doi: 10.3390/ma13204498. PubMed DOI PMC

Liu L., Ding Q., Zhong Y., Zou J., Wu J., Chiu Y.-L., Li J., Zhang Z., Yu Q., Shen Z. Dislocation Network in Additive Manufactured Steel Breaks Strength–Ductility Trade-Off. Mater. Today. 2018;21:354–361. doi: 10.1016/j.mattod.2017.11.004. DOI

Scipioni Bertoli U., Wolfer A.J., Matthews M.J., Delplanque J.-P.R., Schoenung J.M. On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting. Mater. Des. 2017;113:331–340. doi: 10.1016/j.matdes.2016.10.037. DOI

King W.E., Barth H.D., Castillo V.M., Gallegos G.F., Gibbs J.W., Hahn D.E., Kamath C., Rubenchik A.M. Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing. J. Mater. Processing Technol. 2014;214:2915–2925. doi: 10.1016/j.jmatprotec.2014.06.005. DOI

Rubenchik A.M., King W.E., Wu S.S. Scaling Laws for the Additive Manufacturing. J. Mater. Processing Technol. 2018;257:234–243. doi: 10.1016/j.jmatprotec.2018.02.034. DOI

Kimura T., Nakamoto T., Ozaki T., Sugita K., Mizuno M., Araki H. Microstructural Formation and Characterization Mechanisms of Selective Laser Melted Al–Si–Mg Alloys with Increasing Magnesium Content. Mater. Sci. Eng. A. 2019;754:786–798. doi: 10.1016/j.msea.2019.02.015. DOI

Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective Laser Melting of Iron-Based Powder. J. Mater. Processing Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI

Sonawane A., Roux G., Blandin J.-J., Despres A., Martin G. Cracking Mechanism and Its Sensitivity to Processing Conditions during Laser Powder Bed Fusion of a Structural Aluminum Alloy. Materialia. 2021;15:100976. doi: 10.1016/j.mtla.2020.100976. DOI

Rappaz M., Drezet J.-M., Gremaud M. A New Hot-Tearing Criterion. Met. Mat. Trans. A. 1999;30:449–455. doi: 10.1007/s11661-999-0334-z. DOI

Kontis P., Chauvet E., Peng Z., He J., da Silva A.K., Raabe D., Tassin C., Blandin J.-J., Abed S., Dendievel R., et al. Atomic-Scale Grain Boundary Engineering to Overcome Hot-Cracking in Additively-Manufactured Superalloys. Acta Mater. 2019;177:209–221. doi: 10.1016/j.actamat.2019.07.041. DOI

Kou S. Solidification and Liquation Cracking Issues in Welding. JOM. 2003;55:37–42. doi: 10.1007/s11837-003-0137-4. DOI

Zhu Z.G., Nguyen Q.B., Ng F.L., An X.H., Liao X.Z., Liaw P.K., Nai S.M.L., Wei J. Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting. Scr. Mater. 2018;154:20–24. doi: 10.1016/j.scriptamat.2018.05.015. DOI

Belli Y., Okada M., Thomas G., Homma M., Kaneko H. Microstructure and Magnetic Properties of Fe-Cr-Co-V Alloys. J. Appl. Phys. 1978;49:2049–2051. doi: 10.1063/1.324701. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...