Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
null
Foundation for Aalto University Science and Technology
201706040062
China Scholarship Council
PubMed
35269032
PubMed Central
PMC8911743
DOI
10.3390/ma15051801
PII: ma15051801
Knihovny.cz E-zdroje
- Klíčová slova
- direct metal laser sintering, high-entropy alloys, laser powder bed fusion, magnetic properties, selective laser melting, spinodal decomposition,
- Publikační typ
- časopisecké články MeSH
A non-equiatomic AlCoCr0.75Cu0.5FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr0.75Cu0.5FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger Ms. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.
Faculty of Production Engineering University of Bremen Badgasteiner Straße 1 28359 Bremen Germany
Leibniz Institute for Materials Engineering IWT Badgasteiner Straße 3 28359 Bremen Germany
Zobrazit více v PubMed
Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off. Nature. 2016;534:227–230. doi: 10.1038/nature17981. PubMed DOI
Huang P.-K., Yeh J.-W., Shun T.-T., Chen S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004;6:74–78. doi: 10.1002/adem.200300507. DOI
Nene S.S., Frank M., Liu K., Sinha S., Mishra R.S., McWilliams B.A., Cho K.C. Corrosion-Resistant High Entropy Alloy with High Strength and Ductility. Scr. Mater. 2019;166:168–172. doi: 10.1016/j.scriptamat.2019.03.028. DOI
Kumar N.A.P.K., Li C., Leonard K.J., Bei H., Zinkle S.J. Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation. Acta Mater. 2016;113:230–244. doi: 10.1016/j.actamat.2016.05.007. DOI
Li C., Hu X., Yang T., Kumar N.K., Wirth B.D., Zinkle S.J. Neutron Irradiation Response of a Co-Free High Entropy Alloy. J. Nucl. Mater. 2019;527:151838. doi: 10.1016/j.jnucmat.2019.151838. DOI
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Tang Z., Gao M.C., Diao H., Yang T., Liu J., Zuo T., Zhang Y., Lu Z., Cheng Y., Zhang Y., et al. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. JOM. 2013;65:1848–1858. doi: 10.1007/s11837-013-0776-z. DOI
Tong C.-J., Chen Y.-L., Yeh J.-W., Lin S.-J., Chen S.-K., Shun T.-T., Tsau C.-H., Chang S.-Y. Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Met. Mat. Trans. A. 2005;36:881–893. doi: 10.1007/s11661-005-0283-0. DOI
Zhou Y.J., Zhang Y., Wang F.J., Chen G.L. Phase Transformation Induced by Lattice Distortion in Multiprincipal Component CoCrFeNiCuxAl1−x Solid-Solution Alloys. Appl. Phys. Lett. 2008;92:241917. doi: 10.1063/1.2938690. DOI
Kuznetsov A.V., Shaysultanov D.G., Stepanov N.D., Salishchev G.A., Senkov O.N. Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in as-Cast and Wrought Conditions. Mater. Sci. Eng. A. 2012;533:107–118. doi: 10.1016/j.msea.2011.11.045. DOI
Tung C.-C., Yeh J.-W., Shun T., Chen S.-K., Huang Y.-S., Chen H.-C. On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System. Mater. Lett. 2007;61:1–5. doi: 10.1016/j.matlet.2006.03.140. DOI
Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J. Decomposition in Multi-Component AlCoCrCuFeNi High-Entropy Alloy. Acta Mater. 2011;59:182–190. doi: 10.1016/j.actamat.2010.09.023. DOI
Ivchenko M.V., Pushin V.G., Uksusnikov A.N., Wanderka N., Kourov N.I. Specific Features of Cast High-Entropy AlCrFeCoNiCu Alloys Produced by Ultrarapid Quenching from the Melt. Phys. Met. Metallogr. 2013;114:503–513. doi: 10.1134/S0031918X13060057. DOI
Lavernia E.J., Srivatsan T.S. The Rapid Solidification Processing of Materials: Science, Principles, Technology, Advances, and Applications. J. Mater. Sci. 2010;45:287–325. doi: 10.1007/s10853-009-3995-5. DOI
Kok Y., Tan X.P., Wang P., Nai M.L.S., Loh N.H., Liu E., Tor S.B. Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review. Mater. Des. 2018;139:565–586. doi: 10.1016/j.matdes.2017.11.021. DOI
Brif Y., Thomas M., Todd I. The Use of High-Entropy Alloys in Additive Manufacturing. Scr. Mater. 2015;99:93–96. doi: 10.1016/j.scriptamat.2014.11.037. DOI
Joseph J., Jarvis T., Wu X., Stanford N., Hodgson P., Fabijanic D.M. Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted Al x CoCrFeNi High Entropy Alloys. Mater. Sci. Eng. A. 2015;633:184–193. doi: 10.1016/j.msea.2015.02.072. DOI
Sun Z., Tan X., Wang C., Descoins M., Mangelinck D., Tor S.B., Jägle E.A., Zaefferer S., Raabe D. Reducing Hot Tearing by Grain Boundary Segregation Engineering in Additive Manufacturing: Example of an AlxCoCrFeNi High-Entropy Alloy. Acta Mater. 2021;204:116505. doi: 10.1016/j.actamat.2020.116505. DOI
Wang Y., Li R., Niu P., Zhang Z., Yuan T., Yuan J., Li K. Microstructures and Properties of Equimolar AlCoCrCuFeNi High-Entropy Alloy Additively Manufactured by Selective Laser Melting. Intermetallics. 2020;120:106746. doi: 10.1016/j.intermet.2020.106746. DOI
Jung H.Y., Peter N.J., Gärtner E., Dehm G., Uhlenwinkel V., Jägle E.A. Bulk Nanostructured AlCoCrFeMnNi Chemically Complex Alloy Synthesized by Laser-Powder Bed Fusion. Addit. Manuf. 2020;35:101337. doi: 10.1016/j.addma.2020.101337. DOI
Guan S., Solberg K., Wan D., Berto F., Welo T., Yue T.M., Chan K.C. Formation of Fully Equiaxed Grain Microstructure in Additively Manufactured AlCoCrFeNiTi0.5 High Entropy Alloy. Mater. Des. 2019;184:108202. doi: 10.1016/j.matdes.2019.108202. DOI
Scipioni Bertoli U., Guss G., Wu S., Matthews M.J., Schoenung J.M. In-Situ Characterization of Laser-Powder Interaction and Cooling Rates through High-Speed Imaging of Powder Bed Fusion Additive Manufacturing. Mater. Des. 2017;135:385–396. doi: 10.1016/j.matdes.2017.09.044. DOI
Hooper P.A. Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion. Addit. Manuf. 2018;22:548–559. doi: 10.1016/j.addma.2018.05.032. DOI
Kao Y.-F., Chen S.-K., Chen T.-J., Chu P.-C., Yeh J.-W., Lin S.-J. Electrical, Magnetic, and Hall Properties of AlxCoCrFeNi High-Entropy Alloys. J. Alloys Compd. 2011;509:1607–1614. doi: 10.1016/j.jallcom.2010.10.210. DOI
Borkar T., Chaudhary V., Gwalani B., Choudhuri D., Mikler C.V., Soni V., Alam T., Ramanujan R.V., Banerjee R. A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–XFeNi. Adv. Eng. Mater. 2017;19:1700048. doi: 10.1002/adem.201700048. DOI
Zuo T., Gao M.C., Ouyang L., Yang X., Cheng Y., Feng R., Chen S., Liaw P.K., Hawk J.A., Zhang Y. Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) High Entropy Alloys by Metal Doping. Acta Mater. 2017;130:10–18. doi: 10.1016/j.actamat.2017.03.013. DOI
Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., Wang Y.C., Zhang Q.J. Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy. J. Alloys Compd. 2010;502:295–299. doi: 10.1016/j.jallcom.2009.11.104. DOI
Zhang Y., Chen Z., Cao D., Zhang J., Zhang P., Tao Q., Yang X. Concurrence of Spinodal Decomposition and Nano-Phase Precipitation in a Multi-Component AlCoCrCuFeNi High-Entropy Alloy. J. Mater. Res. Technol. 2019;8:726–736. doi: 10.1016/j.jmrt.2018.04.020. DOI
Peter N.J., Duarte M.J., Liebscher C.H., Srivastava V.C., Uhlenwinkel V., Jägle E.A., Dehm G. Early Stage Phase Separation of AlCoCr0.75Cu0.5FeNi High-Entropy Powder at the Nanoscale. J. Alloys Compd. 2020;820:153149. doi: 10.1016/j.jallcom.2019.153149. DOI
Cullity B.D., Graham C.D. Introduction to Magnetic Materials. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Singh S., Wanderka N., Kiefer K., Siemensmeyer K., Banhart J. Effect of Decomposition of the Cr–Fe–Co Rich Phase of AlCoCrCuFeNi High Entropy Alloy on Magnetic Properties. Ultramicroscopy. 2011;111:619–622. doi: 10.1016/j.ultramic.2010.12.001. PubMed DOI
Rao Z., Dutta B., Körmann F., Lu W., Zhou X., Liu C., Silva A.K., Wiedwald U., Spasova M., Farle M., et al. Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition. Adv. Funct. Mater. 2021;31:2007668. doi: 10.1002/adfm.202007668. DOI
Srivastava V.C., Mandal G.K., Ciftci N., Uhlenwinkel V., Mädler L. Processing of High-Entropy AlCoCr0.75Cu0.5FeNi Alloy by Spray Forming. J. Mater. Eng. Perform. 2017;26:5906–5920. doi: 10.1007/s11665-017-3071-2. DOI
Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.-P. A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–3312. doi: 10.1016/j.actamat.2010.02.004. DOI
McMahon C., Soe B., Loeb A., Vemulkar A., Ferry M., Bassman L. Boundary Identification in EBSD Data with a Generalization of Fast Multiscale Clustering. Ultramicroscopy. 2013;133:16–25. doi: 10.1016/j.ultramic.2013.04.009. PubMed DOI
Lehto P., Remes H., Saukkonen T., Hänninen H., Romanoff J. Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel. Mater. Sci. Eng. A. 2014;592:28–39. doi: 10.1016/j.msea.2013.10.094. DOI
Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization; Geneva, Switzerland: 2018. ISO Standard 6507-1: 2018.
Huang S., Sing S.L., de Looze G., Wilson R., Yeong W.Y. Laser Powder Bed Fusion of Titanium-Tantalum Alloys: Compositions and Designs for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020;108:103775. doi: 10.1016/j.jmbbm.2020.103775. PubMed DOI
Luo S., Gao P., Yu H., Yang J., Wang Z., Zeng X. Selective Laser Melting of an Equiatomic AlCrCuFeNi High-Entropy Alloy: Processability, Non-Equilibrium Microstructure and Mechanical Behavior. J. Alloys Compd. 2019;771:387–397. doi: 10.1016/j.jallcom.2018.08.290. DOI
Zhang H., Zhu H., Nie X., Yin J., Hu Z., Zeng X. Effect of Zirconium Addition on Crack, Microstructure and Mechanical Behavior of Selective Laser Melted Al-Cu-Mg Alloy. Scr. Mater. 2017;134:6–10. doi: 10.1016/j.scriptamat.2017.02.036. DOI
Liu P., Wang Z., Xiao Y., Horstemeyer M.F., Cui X., Chen L. Insight into the Mechanisms of Columnar to Equiaxed Grain Transition during Metallic Additive Manufacturing. Addit. Manuf. 2019;26:22–29. doi: 10.1016/j.addma.2018.12.019. DOI
Unnikrishnan R., Northover S.M., Jazaeri H., Bouchard P.J. Investigating Plastic Deformation around a Reheat-Crack in a 316H Austenitic Stainless Steel Weldment by Misorientation Mapping. Procedia Struct. Integr. 2016;2:3501–3507. doi: 10.1016/j.prostr.2016.06.436. DOI
Yamanaka K., Saito W., Mori M., Matsumoto H., Sato S., Chiba A. Abnormal Grain Growth in Commercially Pure Titanium during Additive Manufacturing with Electron Beam Melting. Materialia. 2019;6:100281. doi: 10.1016/j.mtla.2019.100281. DOI
Yang X., Ge Y., Lehtonen J., Hannula S.-P. Hierarchical Microstructure of Laser Powder Bed Fusion Produced Face-Centered-Cubic-Structured Equiatomic CrFeNiMn Multicomponent Alloy. Materials. 2020;13:4498. doi: 10.3390/ma13204498. PubMed DOI PMC
Liu L., Ding Q., Zhong Y., Zou J., Wu J., Chiu Y.-L., Li J., Zhang Z., Yu Q., Shen Z. Dislocation Network in Additive Manufactured Steel Breaks Strength–Ductility Trade-Off. Mater. Today. 2018;21:354–361. doi: 10.1016/j.mattod.2017.11.004. DOI
Scipioni Bertoli U., Wolfer A.J., Matthews M.J., Delplanque J.-P.R., Schoenung J.M. On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting. Mater. Des. 2017;113:331–340. doi: 10.1016/j.matdes.2016.10.037. DOI
King W.E., Barth H.D., Castillo V.M., Gallegos G.F., Gibbs J.W., Hahn D.E., Kamath C., Rubenchik A.M. Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing. J. Mater. Processing Technol. 2014;214:2915–2925. doi: 10.1016/j.jmatprotec.2014.06.005. DOI
Rubenchik A.M., King W.E., Wu S.S. Scaling Laws for the Additive Manufacturing. J. Mater. Processing Technol. 2018;257:234–243. doi: 10.1016/j.jmatprotec.2018.02.034. DOI
Kimura T., Nakamoto T., Ozaki T., Sugita K., Mizuno M., Araki H. Microstructural Formation and Characterization Mechanisms of Selective Laser Melted Al–Si–Mg Alloys with Increasing Magnesium Content. Mater. Sci. Eng. A. 2019;754:786–798. doi: 10.1016/j.msea.2019.02.015. DOI
Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective Laser Melting of Iron-Based Powder. J. Mater. Processing Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI
Sonawane A., Roux G., Blandin J.-J., Despres A., Martin G. Cracking Mechanism and Its Sensitivity to Processing Conditions during Laser Powder Bed Fusion of a Structural Aluminum Alloy. Materialia. 2021;15:100976. doi: 10.1016/j.mtla.2020.100976. DOI
Rappaz M., Drezet J.-M., Gremaud M. A New Hot-Tearing Criterion. Met. Mat. Trans. A. 1999;30:449–455. doi: 10.1007/s11661-999-0334-z. DOI
Kontis P., Chauvet E., Peng Z., He J., da Silva A.K., Raabe D., Tassin C., Blandin J.-J., Abed S., Dendievel R., et al. Atomic-Scale Grain Boundary Engineering to Overcome Hot-Cracking in Additively-Manufactured Superalloys. Acta Mater. 2019;177:209–221. doi: 10.1016/j.actamat.2019.07.041. DOI
Kou S. Solidification and Liquation Cracking Issues in Welding. JOM. 2003;55:37–42. doi: 10.1007/s11837-003-0137-4. DOI
Zhu Z.G., Nguyen Q.B., Ng F.L., An X.H., Liao X.Z., Liaw P.K., Nai S.M.L., Wei J. Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting. Scr. Mater. 2018;154:20–24. doi: 10.1016/j.scriptamat.2018.05.015. DOI
Belli Y., Okada M., Thomas G., Homma M., Kaneko H. Microstructure and Magnetic Properties of Fe-Cr-Co-V Alloys. J. Appl. Phys. 1978;49:2049–2051. doi: 10.1063/1.324701. DOI