Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review

. 2020 Jun 19 ; 10 (40) : 23861-23898. [epub] 20200623

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35517370

Graphene quantum dots (GQDs) are an attractive nanomaterial consisting of a monolayer or a few layers of graphene having excellent and unique properties. GQDs are endowed with the properties of both carbon dots (CDs) and graphene. This review addresses applications of GQD based materials in sensing, bioimaging and energy storage. In the first part of the review, different approaches of GQD synthesis such as top-down and bottom-up synthesis methods have been discussed. The prime focus of this review is on green synthesis methods that have also been applied to the synthesis of GQDs. The GQDs have been discussed thoroughly for all the aspects along with their potential applications in sensors, biomedicine, and energy storage systems. In particular, emphasis is given to popular applications such as electrochemical and photoluminescence (PL) sensors, electrochemiluminescence (ECL) sensors, humidity and gas sensors, bioimaging, lithium-ion (Li-ion) batteries, supercapacitors and dye-sensitized solar cells. Finally, the challenges and the future perspectives of GQDs in the aforementioned application fields have been discussed.

Zobrazit více v PubMed

Wick P. Louw-Gaume A. E. Kucki M. Krug H. F. Kostarelos K. Fadeel B. Dawson K. A. Salvati A. Vázquez E. Ballerini L. Tretiach M. Flahaut E. Gauthier L. Prato M. Bianco A. Classificsation framework for graphene-based materials. Angew. Chem., Int. Ed. 2014;53(30):7714–7718. doi: 10.1002/anie.201403335. PubMed DOI

Li L. Wu G. Yang G. Peng J. Zhao J. Zhu J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015–4039. doi: 10.1039/C3NR33849E. PubMed DOI

Geim A. K. Graphene: Status and prospects. Science. 2009;324(5934):1530–1534. doi: 10.1126/science.1158877. PubMed DOI

Katsnelson M. I. Graphene: Carbon in two dimensions. Mater. Today. 2007;10(1–2):20–27. doi: 10.1016/S1369-7021(06)71788-6. DOI

Alwarappan S. and Kumar A., Graphene based materials: Science and Technology, Chapter 1: Graphene an introduction, Taylor & Francis group, CRC Press, London, New York: 2014

Deshmukh K. Joshi G. M. Embedded capacitor applications of graphene oxide reinforced poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) composites. J. Mater. Sci.: Mater. Electron. 2015;26:5896–5909. doi: 10.1007/s10854-015-3159-0. DOI

Thangamani G. J. Deshmukh K. Sadasivuni K. K. Chidambaram K. Ahamed M. B. Ponnamma D. AlMaadeed M. A. A. Pasha S. K. K. Recent advances in electrochemical biosensor and gas sensors based on graphene and carbon nanotubes (CNT) – a review. Adv. Mater. Lett. 2017;8:196–205. doi: 10.5185/amlett.2017.7042. DOI

Sadasivuni K. K. Ponnamma D. Thomas S. Grohens Y. Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 2014;39(4):749–780. doi: 10.1016/j.progpolymsci.2013.08.003. DOI

Deshmukh K. Ahamed M. B. Sankaran S. Pasha S. K. K. Sadasivuni K. K. Ponnamma D. AlMaadeed M. A. A. Studies on the mechanical, morphological and electrical properties of highly dispersible graphene oxide reinforced polypyrrole and polyvinyl alcohol blend composites. Mater. Today: Proc. 2018;5:8744–8752.

Deshmukh K. Sankaran S. Ahamed M. B. Pasha S. K. K. Sadasivuni K. K. Ponnamma D. AlMaadeed M. A. A. Studies on the electrical properties of graphene oxide-reinforced poly(4-styrene sulfonic acid) and polyvinyl alcohol blend composites. Int. J. Nanosci. 2018;17:1760005–1760013. doi: 10.1142/S0219581X17600055. DOI

Li H. He X. Kang Z. Huang H. Liu Y. Liu J. Lian S. Tsang C. H. Yang X. Lee S. T. Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem., Int. Ed. 2010;49:4430–4434. doi: 10.1002/anie.200906154. PubMed DOI

Tajik S. Dourandish Z. Zhang K. Beitollahi H. Le O. V. Jang H. W. Shokouhimehr M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10:15406–15429. doi: 10.1039/D0RA00799D. PubMed DOI PMC

Sun H. Wu L. Wei W. Qu X. Recent advances in graphene quantum dots for sensing. Mater. Today. 2013;16(11):433–442. doi: 10.1016/j.mattod.2013.10.020. DOI

Zhu S. Song Y. Zhao X. Shao J. Zhang J. Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): current state and future perspective. Nano Res. 2015;8:355–384. doi: 10.1007/s12274-014-0644-3. DOI

Shamsipur M. Barati A. Taherpour A. A. Jamshidi M. Resolving the Multiple Emission Centers in Carbon Dots: From Fluorophore Molecular States to Aromatic Domain States and Carbon-Core States. J. Phys. Chem. Lett. 2018;9:4189–4198. doi: 10.1021/acs.jpclett.8b02043. PubMed DOI

Xia C. Zhu S. Feng T. Yang M. Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019;6:1901316. doi: 10.1002/advs.201901316. PubMed DOI PMC

Zheng X. T. Ananthanarayanan A. Luo K. Q. Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–1636. doi: 10.1002/smll.201402648. PubMed DOI

Vithalani R. Patel D. Modi C. K. Suthar D. H. Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. J. Mater. Sci. 2020;55:8769–8792. doi: 10.1007/s10853-020-04671-x. DOI

Kim C. O. Hwang S. W. Kim S. Shin D. H. Kang S. S. Kim J. M. Jang C. W. Kim J. H. Lee K. W. Suk-Ho C. Hwang E. High-performance graphene quantum dot photodetectors. Sci. Rep. 2014;4:5603. doi: 10.1038/srep05603. PubMed DOI PMC

Zhang Z. Zhang J. Chen N. Qu L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012;5(10):8869–8890. doi: 10.1039/C2EE22982J. DOI

Zhu S. Zhang J. Qiao C. Tang S. Li Y. Yuan W. Tian B. L. L. Liu F. Hu R. Gao H. Wei H. Zhang H. Sun H. Yang B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011;47(24):6858–6860. doi: 10.1039/C1CC11122A. PubMed DOI

Tanveer T. and Shaowei Z., Graphene quantum dots: Syntheses, properties and biological applications, Compr. Nanosci. Nanotechnol., 2016, vol. 3, pp. 171–192

Tian P. Tang L. Teng K. S. Lau S. P. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018;10:221–258. doi: 10.1016/j.mtchem.2018.09.007. DOI

Zhang J. Yong-qiang M. Li N. Jing-li Z. Zhang T. Zhang W. Liu B. Preparation of graphene quantum dots and their application in cell imaging. J. Nanomater. 2016;2016:9245865.

Zhu S. Song Y. Wang J. Wan H. Zhang Y. Ninga Y. Yang B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today. 2017;13:10–14. doi: 10.1016/j.nantod.2016.12.006. DOI

Sun H. Wu L. Gao N. Ren J. Qu X. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Interfaces. 2013;5(3):1174–1179. doi: 10.1021/am3030849. PubMed DOI

Jin Z. Owour P. Lei S. Ge L. Graphene, graphene quantum dots and their applications in optoelectronics. Curr. Opin. Colloid Interface Sci. 2015;20(5–6):439–453. doi: 10.1016/j.cocis.2015.11.007. DOI

Chen W. Lv G. Hu W. Li D. Chen S. Dai Z. Synthesis and applications of graphene quantum dots: a review. Nanotechnol. Rev. 2018;7(2):157–185.

Shen J. Zhu Y. Chen C. J. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 2011;47(9):2580–2582. doi: 10.1039/C0CC04812G. PubMed DOI

Zhou C. F. Jiang W. Via B. K. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf., B. 2014;118:72–76. doi: 10.1016/j.colsurfb.2014.03.038. PubMed DOI

Chua C. K. Sofer Z. Šimek P. Jankovsky O. Klimova K. Bakardjieva S. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano. 2015;9(3):2548–2555. doi: 10.1021/nn505639q. PubMed DOI

Lu Q. Wu C. Liu D. Wang H. Su W. Li H. A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 2017;19(4):900–904. doi: 10.1039/C6GC03092K. DOI

Li K. Liu W. Ni Y. Li D. Lin D. Su Z. Wei G. Technical synthesis and biomedical applications of graphene quantum dots. J. Mater. Chem. B. 2017;5:4811–4826. doi: 10.1039/C7TB01073G. PubMed DOI

Tetsuka H. Asahi R. Nagoya A. Optically tunable amino-functionalized graphene quantum dots. J. Adv. Mater. 2012;24(39):5333–5338. doi: 10.1002/adma.201201930. PubMed DOI

Tian R. Zhong S. Wu J. Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Opt. Mater. 2016;60:204–208. doi: 10.1016/j.optmat.2016.07.032. DOI

Liu B. Xie J. Ma H. From graphite to graphene oxide and graphene oxide quantum dots. Small. 2017;13(18):1601001. doi: 10.1002/smll.201601001. PubMed DOI

Li W. Li M. Liu Y. Pan D. Li Z. Wang L. Wu M. Three minute ultra-rapid microwave assisted synthesis of bright fluorescent graphene quantum dots for live cell staining and white LEDs. ACS Appl. Nano Mater. 2018;1(4):1623–1630. doi: 10.1021/acsanm.8b00114. DOI

Zhang C. F. Cui Y. Y. Song L. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta. 2016;150:54–60. doi: 10.1016/j.talanta.2015.12.015. PubMed DOI

Wen J. W. Li M. J. Xiao J. D. Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application. Mater. Today Commun. 2016;8:127–133. doi: 10.1016/j.mtcomm.2016.07.006. DOI

Luo Z. M. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Funct. Mater. 2016;26(16):2739–2744. doi: 10.1002/adfm.201505044. DOI

Zhang X. Wei C. Li Y. Yu D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. TrAC, Trends Anal. Chem. 2019;116:109–121. doi: 10.1016/j.trac.2019.03.011. DOI

Shinde D. B. Pillai V. K. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem.–Eur. J. 2012;18(39):12522–12528. doi: 10.1002/chem.201201043. PubMed DOI

Deka M. J. Chowdhury D. CVD assisted hydrophobic graphene quantum dots: fluorescence sensor for aromatic amino acids. Chem. Sel. 2017;2(5):1999–2005.

Huang K. Lu W. Yu X. Jin C. Yang D. Graphene quantum dots: highly pure and luminescent graphene quantum dots on silicon directly grown by chemical vapor deposition. Part. Part. Syst. Charact. 2016;33(1):8–14. doi: 10.1002/ppsc.201500132. DOI

Fan L. Zhu M. Lee X. Zhang R. Wang K. Wei J. Zhong M. Wu D. Zhu H. Direct synthesis of graphene quantum dots by chemical vapor deposition. Part. Part. Syst. Charact. 2013;30(9):764–769. doi: 10.1002/ppsc.201300125. DOI

Kang S. H. Mhin S. Han H. Kim K. M. Jones J. L. Ryu J. H. Kang J. S. Kim S. H. Shim K. B. Ultrafast method for selective design of graphene quantum dots with highly efficient blue emission. Sci. Rep. 2016;6:38423. doi: 10.1038/srep38423. PubMed DOI PMC

Russo P. Liang R. Jabaric E. Marzbanrad E. Toyserkani E. Zhou Y. N. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale. 2016;8(16):8863–8877. doi: 10.1039/C6NR01148A. PubMed DOI

Santiago S. R. Lina T. N. Yuana C. T. Shen J. L. Huang H. Y. Lin C. A. J. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Phys. Chem. Chem. Phys. 2016;18(32):22599–22605. doi: 10.1039/C6CP03159E. PubMed DOI

Lin T. N. Chih K. H. Yuan C. T. Shen J. L. Lin C. A. J. Liu W. R. Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale. 2015;7(6):2708–2715. doi: 10.1039/C4NR05737F. PubMed DOI

Wang L. Li W. Wu B. Li Z. Pan D. Wu M. Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chem. Eng. J. 2017;309:374–380. doi: 10.1016/j.cej.2016.10.022. DOI

Yan X. Cui X. Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010;132(17):5944–5945. doi: 10.1021/ja1009376. PubMed DOI

Riaz R. Ali M. Sahito I. A. Arbab A. A. Maiyalagan T. Anjum A. S. Kob M. J. Jeong S. H. Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Appl. Surf. Sci. 2019;480:1035–1046. doi: 10.1016/j.apsusc.2019.02.228. DOI

Naik J. P. Sutradhar P. Saha M. Molecular scale rapid synthesis of graphene quantum dots (GQDs) J. Nanostruct. Chem. 2017;7:85–89. doi: 10.1007/s40097-017-0222-9. DOI

Deng S. Fu A. Junaid M. Wang Y. Yin Q. Fu C. Liu L. Su D. S. Bian W. P. Pei D. S. Nitrogen-doped graphene quantum dots (N-GQDs) perturb redox-sensitive system via the selective inhibition of antioxidant enzyme activities in zebra fish. Biomaterials. 2019;206:61–72. doi: 10.1016/j.biomaterials.2019.03.028. PubMed DOI

Zhou L. Geng J. L. Liu B. Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part. Part. Syst. Charact. 2013;30(12):1086–1092. doi: 10.1002/ppsc.201300170. DOI

Zdrazil L. Zahradnicek R. Mohan R. Sedlacek P. Nejdl L. Schmiedova V. Pospisil J. Horak M. Weiter M. Zmeskal O. Hubalek J. Preparation of graphene quantum dots through liquid phase exfoliation method. J. Lumin. 2018;204:203–208. doi: 10.1016/j.jlumin.2018.08.017. DOI

Sarkar S. Gandla D. Venkatesh Y. Bangal P. R. Ghosh S. Yang Y. Misra S. Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys. Chem. Chem. Phys. 2016;18(31):21278–21287. doi: 10.1039/C6CP01528J. PubMed DOI

Viculis L. M. Mack J. J. Mayer O. M. Hahn H. T. Kaner R. B. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005;15(9):974–978. doi: 10.1039/B413029D. DOI

Xie J. D. Lai G. W. Huq M. M. Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diamond Relat. Mater. 2017;79:112–118. doi: 10.1016/j.diamond.2017.08.014. DOI

Tian R. Zhong S. Wu J. Jiang W. Wang T. Facile hydrothermal method to prepare graphene quantum dots from graphene oxide with different photoluminescences. RSC Adv. 2016;6(46):40422–40426. doi: 10.1039/C6RA00780E. DOI

Pan D. Zhang J. Li Z. Minghong W. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010;22(6):734–738. doi: 10.1002/adma.200902825. PubMed DOI

Shen J. Zhu Y. Yang X. Zong J. Zhang J. Li C. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012;36(1):97–101. doi: 10.1039/C1NJ20658C. DOI

Peng J. Zhao Z. Zheng M. Su B. Chen X. Chen X. Electrochemical synthesis of phosphorus and sulfur co-doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid. Sens. Actuators, B. 2020;304:127383. doi: 10.1016/j.snb.2019.127383. DOI

Joffrion J. B. Clower W. Wilson C. G. Tunable excitation-independent emissions from graphene quantum dots through microplasma-assisted electrochemical synthesis. Nano-Struct. Nano-Objects. 2019;19:100341. doi: 10.1016/j.nanoso.2019.100341. DOI

Singh R. K. Kumar R. Singh D. P. Savu R. Moshkalev S. A. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater. Today Chem. 2019;12:282–314. doi: 10.1016/j.mtchem.2019.03.001. DOI

Zeng Z. Chen S. Tan T. T. Y. Xiao F. X. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today. 2018;315:171–183. doi: 10.1016/j.cattod.2018.01.005. DOI

Valappil M. O. Pillai V. K. Alwarappan S. Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Appl Mater Today. 2017:350–371. doi: 10.1016/j.apmt.2017.09.002. DOI

Kalluri A. Debnath D. Dharmadhikari B. Patra P. Graphene quantum dots: Synthesis and applications. Methods Enzymol. 2018;609:335–354. PubMed

Tang L L. Ji R. Cao X. Lin J. Jiang H. Li X. Teng K. S. Luk C. M. Zeng S. Hao J. Lau S. P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–5110. doi: 10.1021/nn300760g. PubMed DOI

Chen S. Liu J. W. Chen M. L. Chen X. W. Wang J. H. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem. Commun. 2012;48(61):7637–7639. doi: 10.1039/C2CC32984K. PubMed DOI

Huang Z. Shen Y. Li Y. Zheng W. Xue Y. Qin C. Zhang B. Hao J. Feng W. Facile synthesis of analogous graphene quantum dots with Sp2 hybridized carbon atom dominant structures and their photovoltaic application. Nanoscale. 2014;6(21):13043–13052. doi: 10.1039/C4NR03658A. PubMed DOI

Hou X. Li Y. Zhao C. Microwave-assisted synthesis of nitrogen-doped multilayer graphene quantum dots with oxygen-rich functional groups. Aust. J. Chem. 2016;69(3):357–360. doi: 10.1071/CH15431. DOI

Xie Y. Kocaefe D. Chen C. Kocaefe Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016;2016:1–10. doi: 10.1155/2016/2302595. DOI

Kwon W. Lee G. Do S. Joo T. Rhee S. W. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small. 2013;10(3):506–513. doi: 10.1002/smll.201301770. PubMed DOI

Li R. Liu Y. Li Z. Shen J. Yang Y. Cui X. Yang G. Bottom-up fabrication of single-layered nitrogen-doped graphene quantum dots through intermolecular carbonization arrayed in a 2D plane. Chem.–Eur. J. 2016;22(1):272–278. doi: 10.1002/chem.201503191. PubMed DOI

Liu R. Wu D. Feng X. Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011;133(39):15221–15223. doi: 10.1021/ja204953k. PubMed DOI

Ciesielski A. Haar S. Aliprandi A. Garah M. E. Tregnago G. Cotella G. F. Gemayel M. E. Richard F. Sun H. Cacialli F. Bonaccorso F. Samori P. Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano. 2016;10(12):10768–10777. doi: 10.1021/acsnano.6b03823. PubMed DOI

Gao S. Tang L. Xiang J. Ji R. Lai S. K. Yuan S. Lau S. P. Facile preparation of sulphur-doped graphene quantum dots for ultra-high performance ultraviolet photodetectors. New J. Chem. 2011;41(18):10447–10451. doi: 10.1039/C7NJ01989K. DOI

Do S. Kwon W. Rhee S. W. Soft-template synthesis of nitrogen-doped carbon nanodots: tunable visible-light photoluminescence and phosphor-based light-emitting diodes. J. Mater. Chem. C. 2014;2(21):4221–4226. doi: 10.1039/C4TC00090K. DOI

Allen C. L. Williams J. M. J. Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev. 2011;40(7):3405–3415. doi: 10.1039/C0CS00196A. PubMed DOI

Lu J. Yeo P. S. E. Gan C. K. Wu P. Loh K. P. Transforming C-60 molecules into graphene quantum dots. Nat. Nanotechnol. 2011;6:247–252. doi: 10.1038/nnano.2011.30. PubMed DOI

Kumawat M. K. Thakur M. Gurung R. B. Srivastava R. Graphene quantum dots from mangifera indica: Application in near-infrared bioimaging and intracellular nano-thermometry. ACS Sustainable Chem. Eng. 2017;5(2):1382–1392. doi: 10.1021/acssuschemeng.6b01893. DOI

Chunduri L. A. Kurdekar A. Patnaik S. Dev B. V. Rattan T. M. Kamisetti V. Carbon quantum dots from coconut husk: Evaluation for antioxidant and cytotoxic activity. Mater. Focus. 2016;5(1):55–61. doi: 10.1166/mat.2016.1289. DOI

Zhu J. Tang Y. Wang G. Mao J. Liu Z. Sun T. Wang M. Chen D. Ya Y. Li J. Deng Y. Yang S. Green, rapid, and universal preparation approach of graphenequantum dots under ultraviolet irradiation. ACS Appl. Mater. Interfaces. 2017;9(16):14470–14477. doi: 10.1021/acsami.6b11525. PubMed DOI

Teymourinia H. Salavati-Niasari M. Amiri O. Safardoust-Hojaghan H. Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq. 2017;242:447–455. doi: 10.1016/j.molliq.2017.07.052. DOI

Al-Mahmnur A. Byung-Yong P. Ghouri Z. K. Park M. Hak-Yong K. Synthesis of carbon quantum dot from cabbage with down- andup-conversion photoluminescence properties: Excellent imaging agent for biomedical application. Green Chem. 2015;17(1):3791–3797.

Chen W. Li D. Tian L. Xiang W. Wang T. Hu W. Hu Y. Chen S. Chen J. Dai Z. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018;20(19):4438–4442. doi: 10.1039/C8GC02106F. DOI

Anooj E. S. Praseetha P. K. Synthesis and characterization of graphene quantum dots from nutmeg seeds and its biomedical application. Int. J. Recent Technol. Eng. 2019;7(6S5):144–151.

Li Y. Hu Y. Zhao Y. Shi G. Deng L. Hou Y. Qu L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011;23(6):776–780. doi: 10.1002/adma.201003819. PubMed DOI

Tang L. Ji R. Li X. Teng K. S. Lau S. P. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part. Part. Syst. Charact. 2013;30:523–531. doi: 10.1002/ppsc.201200131. DOI

Ritter K. A. Lyding J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009;8:235–242. doi: 10.1038/nmat2378. PubMed DOI

Feng J. Dong H. Yu L. Dong L. The optical and electronic properties of graphene quantum dots with oxygen-containing groups: A density functional theory study. J. Mater. Chem. C. 2017;5:5984–5993. doi: 10.1039/C7TC00631D. DOI

Ling-Ling L. Ji J. Fei R. Chong-Zhi W. Lu Q. Jian-Rong Z. Li-Ping J. Jun-Jie Z. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012;22(14):2971–2979. doi: 10.1002/adfm.201200166. DOI

Peng J. Gao W. Gupta B. K. Liu Z. Romero-Aburto R. Ge L. Song L. Alemany L. B. Zhan X. Gao G. Vithayathil S. A. Kaipparettu B. A. Marti A. A. Hayashi T. Zhu J. J. Ajayan P. M. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–849. doi: 10.1021/nl2038979. PubMed DOI

Zhuo S. Shao M. Lee S. T. Up conversion and down conversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano. 2012;6(2):1059–1064. doi: 10.1021/nn2040395. PubMed DOI

Yang F. Zhao M. Zheng B. Xiao D. Wu L. Guo Y. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 2012;22(48):25471–25479. doi: 10.1039/C2JM35471C. DOI

Dong Y. Chen C. Zheng X. Gao L. Cui Z. Yang H. Guo C. Chi Y. Li C. M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012;22(18):8764–8766. doi: 10.1039/C2JM30658A. DOI

Pan D. Guo L. Zhang J. Xi C. Xue Q. Huang H. Li J. Zhang Z. Yu W. Chen Z. Li Z. Wu M. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012;22(8):3314–3318. doi: 10.1039/C2JM16005F. DOI

Zhang M. Bai L. Shang W. Xie W. Ma H. Fu Y. Fang D. Sun H. Fan L. Han M. Liu C. Yang S. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 2012;22(15):7461–7467. doi: 10.1039/C2JM16835A. DOI

Liu F. Min-Ho J. Ha H. D. Je-Hyung K. Yong-Hoon C. Seo T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater. 2013;25(17):3657–3662. doi: 10.1002/adma.201300233. PubMed DOI

Dey S. Govindaraj A. Biswas K. Rao C. N. R. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem. Phys. Lett. 2014;595–596:203–208. doi: 10.1016/j.cplett.2014.02.012. DOI

Wu M. Wang Y. Wu W. Hu C. Wang X. Zheng J. Li Z. Jiang B. Qiu J. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon. 2014;78:480–489. doi: 10.1016/j.carbon.2014.07.029. DOI

Nguyen D. K. Kim T. Y. Graphene quantum dots produced by exfoliation of intercalated graphite nanoparticles and their application for temperature sensors. Appl. Surf. Sci. 2018;427:1152–1157. doi: 10.1016/j.apsusc.2017.09.020. DOI

Liu R. Zhao J. Huang Z. Zhang L. Zou M. Shi B. Zhao S. Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell. Sens. Actuators, B. 2017;240:604–612. doi: 10.1016/j.snb.2016.09.008. DOI

Ruiz-Palomero C. Soriano M. L. Benítez-Martínez S. Valcárcel M. Photoluminescent sensing hydrogel platform based on the combination of nano cellulose and S, N-codoped graphene quantum dots. Sens. Actuators, B. 2017;245:946–953. doi: 10.1016/j.snb.2017.02.006. DOI

Anh N. T. N. Chowdhury A. D. Doong R. Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sens. Actuators, B. 2017;252:1169–1178. doi: 10.1016/j.snb.2017.07.177. DOI

Kharangarh P. R. Umapathy S. Singh G. Investigation of sulfur related defects in graphene quantum dots for tuning photoluminescence and high quantum yield. Appl. Surf. Sci. 2018;449:363–370. doi: 10.1016/j.apsusc.2018.01.026. DOI

Jin S. H. Kim D. H. Jun G. H. Hong S. H. Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;(2):1239–1245. doi: 10.1021/nn304675g. PubMed DOI

Wang Z. Zeng H. Sun L. Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J. Mater. Chem. C. 2015;3:1157–1165. doi: 10.1039/C4TC02536A. DOI

Jiang D. Chen Y. Li N. Li W. Wang Z. Zhu J. Zhang H. Liu B. Xu S. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One. 2015;10(12):e0144906. doi: 10.1371/journal.pone.0144906. PubMed DOI PMC

Zhang B. He Y. Fan Z. Nitrogen-doped graphene quantum dots as highly sensitive and selective fluorescence sensor detection of iodide ions in milk powder. J. Photochem. Photobiol., A. 2018;367:452–457. doi: 10.1016/j.jphotochem.2018.09.014. DOI

Benítez-Martínez S. Valcárcel M. Graphene quantum dots as sensor for phenols in olive oil. Sens. Actuators, B. 2014;197:350–357. doi: 10.1016/j.snb.2014.03.008. DOI

Qian Z. Ma J. Shan X. Shao L. Zhou J. Chen J. Feng H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 2013;3(34):14571–14579. doi: 10.1039/C3RA42066C. DOI

Kalita H. Palaparthy V. S. Baghinic M. S. Aslam M. Graphene quantum dot soil moisture sensor. Sens. Actuators, B. 2016;233:582–590. doi: 10.1016/j.snb.2016.04.131. DOI

Liu X. Na W. Liu Z. Chen X. Su X. Fluorescence turn-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens. Bioelectron. 2017;98:222–226. doi: 10.1016/j.bios.2017.06.044. PubMed DOI

Li Y. H. Zhang L. Huang J. Liang R. L. Qiu J. D. Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem. Commun. 2013;49(45):5180–5182. doi: 10.1039/C3CC40652K. PubMed DOI

Benitez-Martinez S. Valcarcel M. Graphene quantum dots in analytical science. Anal. Chem. 2015;72:93–133.

Shtepliuk I. Caffrey N. M. Iakimov T. Khranovskyy V. Abrikosov I. A. Yakimova R. On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene. Sci. Rep. 2017;7:3934. doi: 10.1038/s41598-017-04339-8. PubMed DOI PMC

Hua M. Wang C. Kan J. Q. Mao H. Wang K. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury (II) ions. Anal. Chim. Acta. 2015;888:173–181. doi: 10.1016/j.aca.2015.07.042. PubMed DOI

Liu H. Na W. Liu Z. Chen X. Su X. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens. Bioelectron. 2017;92:229–233. doi: 10.1016/j.bios.2017.02.005. PubMed DOI

Caballero-Díaz E. Benítez-Martínez S. Valcárcel M. Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms. Sens. Actuators, B. 2017;240:90–99. doi: 10.1016/j.snb.2016.08.153. DOI

Mondal T. K. Dinda D. Saha S. K. Nitrogen, sulphur co-doped graphene quantum dot: an excellent sensor for nitroexplosives. Sens. Actuators, B. 2018;257:586–593. doi: 10.1016/j.snb.2017.11.012. DOI

Bian S. Shen C. Qian Y. Liu J. Xi F. Dong X. Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens. Actuators, B. 2017;242:231–237. doi: 10.1016/j.snb.2016.11.044. DOI

Xu T. T. Yang J. X. Song J. M. Chen J. S. Niu H. L. Mao C. J. Zhang S. Y. Shen Y. H. Synthesis of high fluorescence graphene quantum dots and theirselective detection for Fe3+ in aqueous solution. Sens. Actuators, B. 2017;243:863–872. doi: 10.1016/j.snb.2016.12.048. DOI

Zor E. Morales-Narvaez E. Zamora-Galves A. Bingol H. Ersoz M. Merkoci A. Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl. Mater. Interfaces. 2015;7:20272–20279. doi: 10.1021/acsami.5b05838. PubMed DOI

Kaur M. Mehta S. K. Kansal S. K. Nitrogen doped graphene quantum dots: efficient fluorescent chemosensor for the selective and sensitive detection of 2,4,6-trinitrophenol. Sens. Actuators, B. 2017;245:938–945. doi: 10.1016/j.snb.2017.02.026. DOI

Tabarak R. Nateghi A. Nitrogen-doped graphene quantum dots: “Turn-off” fluorescent probe for detection of Ag+ ions. J. Fluoresc. 2016;26:297–305. doi: 10.1007/s10895-015-1714-y. PubMed DOI

Wang C. Yanga F. Tang Y. Yang W. Zhong H. Yu C. Li R. Zhou H. Li Y. Mao L. Graphene quantum dots nanosensor derived from 3D nanomesh graphene frameworks and its application for fluorescent sensing of Cu2+ in rat brain. Sens. Actuators, B. 2018;258:672–681. doi: 10.1016/j.snb.2017.11.098. DOI

Zhang R. Adsetts J. R. Nie Y. Sun X. Ding Z. Electrochemiluminescence of nitrogen- and sulfur-doped graphene quantum. Carbon. 2018;129:45–53. doi: 10.1016/j.carbon.2017.11.091. DOI

Han A. Yang Y. Zhang Q. Tu Q. Fang G. Liu J. Wang S. Li R. Electrochemistry and electrochemiluminescence of copper metal cluster. J. Electroanal. Chem. 2017;795:116–122. doi: 10.1016/j.jelechem.2017.04.058. DOI

Chen X. Su B. Song X. Chen Q. Chen X. Wang X. Recent advances in electrochemiluminescent enzyme biosensors. TrAC, Trends Anal. Chem. 2011;30(5):665–676. doi: 10.1016/j.trac.2010.12.004. DOI

Chen Y. Dong Y. Wu H. Chen C. Chi Y. Chen G. Electrochemiluminescence sensor for hexavalent chromium based on the graphene quantum dots/peroxodisulfate system. Electrochim. Acta. 2015;151:552–557. doi: 10.1016/j.electacta.2014.11.068. DOI

Chen S. Chen X. Xia T. Ma Q. A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens. Bioelectron. 2016;85:903–908. doi: 10.1016/j.bios.2016.06.010. PubMed DOI

Tan F. Cong L. Li X. Zhao Q. Zhao H. Xie Q. Chen J. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens. Actuators, B. 2016;233:599–606. doi: 10.1016/j.snb.2016.04.146. DOI

Hu T. Zhang L. Wen W. Zhang X. Wang S. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron. 2016;77:451–456. doi: 10.1016/j.bios.2015.09.068. PubMed DOI

Liza R. Mandana A. Ciprian M. C. Markus S. Frank M. Mika S. Nanoparticles in electrochemical sensors for environmental monitoring. Trends Anal. Chem. 2011;30(11):1704–1715. doi: 10.1016/j.trac.2011.05.009. DOI

Sai-Dan X. Yang L. Zhao-Yang W. Guo-Li S. Ru-Qin Y. Application of inorganic layered materials in electrochemical sensors. Chin. J. Anal. Chem. 2015;43(11):1648–1658.

Ponnamma D. Parangusan H. Deshmukh K. Kar P. Muzaffar A. Pasha S. K. K. Ahamed M. B. AlMaadeed M. A. A. Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polym.-Plast. Technol. Mater. 2020;59:1–62. doi: 10.1080/25740881.2019.1614327. DOI

Nelson R. S. Hideko Y. Maria V. B. Z. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003;14(2):159–173. doi: 10.1590/S0103-50532003000200003. DOI

Alizadeh T. Shokri M. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sens. Actuators, B. 2016;222:728–734. doi: 10.1016/j.snb.2015.08.122. DOI

Sikarwar S. Yadav B. C. Opto-electronic humidity sensor: Areview. Sens. Actuators, A. 2015;233:54–70. doi: 10.1016/j.sna.2015.05.007. DOI

Jawaher K. R. Indirajith R. Krishnan S. Robert R. Pasha S. K. K. Deshmukh K. Sastikumar S. Das S. J. A high sensitivity isopropanol vapor sensor based on Cr2O3–SnO2 heterojunction nanocomposites via chemical precipitation route. J. Nanosci. Nanotechnol. 2018;18(8):5454–5546. doi: 10.1166/jnn.2018.15396. PubMed DOI

Hosseini Z. S. Irajizad A. Ghiass M. A. Fardindoost S. Hatamie S. A new approach to flexible humidity sensors using graphene quantum dots. J. Mater. Chem. C. 2017;5(35):8966–8973. doi: 10.1039/C7TC01740E. DOI

Zhang X. Ming H. Liu R. Han X. Kang Z. Liu Y. Zhang Y. Highly sensitive humidity sensing properties of carbon quantum dots films. Mater. Res. Bull. 2013;48:790–794. doi: 10.1016/j.materresbull.2012.11.056. DOI

Pasha S. K. K. Chidambaram K. Kennedy L. J. Vijaya J. J. Lead Oxide-PbO humidity sensor. Sens. Transducers J. 2010;122(11):113–119.

Zhuang S. D. Chen Y. Zhang W. C. Chen Z. Wang Z. L. L. Humidity sensor and ultraviolet photodetector based on carrier trapping effect and negative photoconductivity in graphene quantum dots. Sci. China: Phys., Mech. Astron. 2018;61(1):014211–014216.

Long L. M. Dinh N. N. Trung T. Q. Synthesis and characterization of polymeric graphene Quantum Dots based nanocomposites for humidity sensing. J. Nanomater. 2016;2016:5849018.

Yong Z. Rui-Jie T. Mao-Qing C. Feng X. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens. Actuators, B. 2019;284:96–102. doi: 10.1016/j.snb.2018.12.130. DOI

Raeyani D. Shojaei S. Kandjani S. A. lodarski W. Synthesizing graphene quantum dots for gas sensing applications. Procedia Eng. 2016;168:1312–1316. doi: 10.1016/j.proeng.2016.11.356. DOI

Chen W. Lia F. Ooi P. C. Ye Y. Kim T. W. Guo T. Room temperature pH-dependent ammonia gas sensors using graphene quantum dots. Sens. Actuators, B. 2016;222:763–768. doi: 10.1016/j.snb.2015.09.002. DOI

Zhao H. Ding R. Zhao X. Li Y. Qu L. Pei H. Lara Y. Wu Z. Zhang W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discovery Today. 2017;22(9):1302–1317. doi: 10.1016/j.drudis.2017.04.002. PubMed DOI

Murugesan B. Sonamuthu J. Pandiyan N. Pandi B. Samayanan S. Mahalingam S. Photoluminescent reduced graphene oxide quantum dots from latex of Calotropis gigantea for metal sensing, radical scavenging, cytotoxicity, and bioimaging in Artemia salina: A greener route. J. Photochem. Photobiol., B. 2018;178:371–379. doi: 10.1016/j.jphotobiol.2017.11.031. PubMed DOI

Luo L. Yang D. Yang C. Wu X. Hu Y. Zhang Y. Yuwen L. Yeow E. K. L. Weng L. Huang W. Wang L. Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacterial. Appl. Surf. Sci. 2018;434:155–162. doi: 10.1016/j.apsusc.2017.10.121. DOI

Kuo W. S. Chen H. H. Chen S. Y. Chang C. Y. Chen P. C. Hou Y. I. Shao Y. T. Kao H. F. Hsu C. L. L. Chen Y. C. Chen S. J. Wu S. R. Wang J. Y. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials. 2017;120:185–194. doi: 10.1016/j.biomaterials.2016.12.022. PubMed DOI

Tan X. Li Y. Li X. Zhou S. Fan L. Yang S. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 2015;51(13):2544–2546. doi: 10.1039/C4CC09332A. PubMed DOI

Ma C. B. Zhu Z. T. Wang H. X. Huang X. Zhang X. Qi X. Zhang H. L. Zhu Y. Deng X. Peng Y. Hand Y. Zhang H. A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale. 2015;7(22):10162–10169. doi: 10.1039/C5NR01757B. PubMed DOI

Kumar V. Singh V. Umrao S. Parashar V. Abraham S. Singh A. K. Nath G. Saxena P. S. Srivastava A. Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv. 2014;4(40):21101–21107. doi: 10.1039/C4RA01735H. DOI

Su Z. Q. Shen H. Y. Wang H. X. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv. Funct. Mater. 2015;25(34):5472–5478. doi: 10.1002/adfm.201502506. DOI

Ge J. C. Lan M. H. Zhou B. J. Liu W. M. Guo L. Wang H. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Commun. 2014;5:4596. doi: 10.1038/ncomms5596. PubMed DOI PMC

Xu A. He P. Huang T. Li J. Hu X. Xiang P. Chen D. Yang S. Wang G. Ding G. Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro. Synth. Met. 2018;244(244):106–112. doi: 10.1016/j.synthmet.2018.05.013. DOI

Li N. Than A. Chen J. Xi F. Liu J. Chen P. Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomater. Sci. 2018;6:779–784. doi: 10.1039/C7BM00818J. PubMed DOI

Lin L. Rong M. Lu S. Song X. Zhong Y. Yan J. Wang Y. Chen X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale. 2015;7:1872–1878. doi: 10.1039/C4NR06365A. PubMed DOI

Lin L. Song X. Chen Y. Rong M. Zhao T. Wang Y. Jiang Y. Chen X. Intrinsic peroxidase-like catalytic activity of nitrogen-doped grapheme quantum dots and their applications in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta. 2015;869:89–95. doi: 10.1016/j.aca.2015.02.024. PubMed DOI

Gao W. Song H. Wang X. Liu X. Pang X. Zhou Y. Gao B. Peng X. Carbon dots with red emission for sensing of Pt 2+, Au 3+, and Pd 2+ and their bioapplications in Vitro and in Vivo. ACS Appl. Mater. Interfaces. 2018;10(1):1147–1154. doi: 10.1021/acsami.7b16991. PubMed DOI

Chung S. Revia R. A. Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2019:1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC

Iannazzo D. Ziccarelli I. Pistone A. Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. J. Mater. Chem. B. 2017;5:6471–6489. doi: 10.1039/C7TB00747G. PubMed DOI

Zhou X. Zhang Y. Wang C. Wu X. Yang Y. Zheng B. Wu H. Guo S. Zhang J. Photo-fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano. 2012;6(8):6592–6599. doi: 10.1021/nn301629v. PubMed DOI

Minnoti G. Menna P. Salvatorelli E. Cairo G. Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56(2):185–229. doi: 10.1124/pr.56.2.6. PubMed DOI

Wang X. Sun X. Lao J. He H. Cheng T. Wang M. Wang S. Huang F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf., B. 2014;122:638–644. doi: 10.1016/j.colsurfb.2014.07.043. PubMed DOI

Wang C. Wu C. Zhou X. Han T. Xin X. Wu J. Zhang J. Guo S. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots. Sci. Rep. 2013;3:2852. doi: 10.1038/srep02852. PubMed DOI PMC

Qiu J. Zhang R. Li J. Sang Y. Tang W. Rivera G. Liu H. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int. J. Nanomed. 2015;10:6709–6724. PubMed PMC

Russel-Jones G. McTavish K. McEvan J. Rice J. Nowotnik D. Vitamin-mediated Targeting as a Potential Mechanism to Increase Drug Uptake by Tumours. J. Inorg. Biochem. 2004;98:1625–1633. doi: 10.1016/j.jinorgbio.2004.07.009. PubMed DOI

Nahain A. A. Lee J. E. In I. Lee H. Lee K. D. Jeong J. H. Park S. Y. Target Delivery and Cell Imaging Using Hyaluronic Acid-Functionalized Graphene Quantum Dots. Mol. Pharmaceutics. 2013;10:3736–3744. doi: 10.1021/mp400219u. PubMed DOI

Chen H. Wang Z. Zong S. Chen P. Zhu D. Wu L. Cui Y. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale. 2015;7:15477–15486. doi: 10.1039/C5NR03454J. PubMed DOI

Jing Y. Zhu X. Yang X. Shen J. Li C. Ultrasound-Triggered Smart Drug Release from Multifunctional Core−Shell Capsules One-Step Fabricated by Coaxial Electrospray Method. Langmuir. 2011;27:1175–1180. doi: 10.1021/la1042734. PubMed DOI

Yeh T.-F. Teng C.-Y. Chen S.-J. Teng H. Nitrogen-doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting Under Visible Light Illumination. Adv. Mater. 2014;26:3297–3303. doi: 10.1002/adma.201305299. PubMed DOI

Huang Y. Shi T. Zhong Y. Cheng S. Jiang S. Chen C. Liao G. Tang Z. Graphene-quantum-dots induced NiCo2S4 with hierarchical like hollow nanostructure for supercapacitors with enhanced electrochemical performance. Electrochim. Acta. 2018;269:45–54. doi: 10.1016/j.electacta.2018.02.145. DOI

Kim M. Hwang H. M. Park G. H. Lee H. Graphene-based composite electrodes for electrochemical energy storage devices: Recent progress and challenges. FlatChem. 2017;6:48–76. doi: 10.1016/j.flatc.2017.08.002. DOI

Wang G. Hou S. Yan C. Zhang X. Dong W. Preparation of three-dimensional vanadium nitride porous nanoribbon/graphene composite as an efficient electrode material for supercapacitors. J. Mater. Sci.: Mater. Electron. 2018;29:13118–13124. doi: 10.1007/s10854-018-9434-0. DOI

Zhu C. Liu T. Qian F. Chen W. Chandrasekaran S. Yao B. Song Y. Duoss E. B. Kuntz J. D. Spadaccini C. M. Worsley M. A. Li Y. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today. 2017;15:107–120. doi: 10.1016/j.nantod.2017.06.007. DOI

Xu Y. Li X. Hu G. Wu T. Luo Y. Sun L. Tang T. Wen J. Wang H. Li M. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors. Appl. Surf. Sci. 2017;422:847–855. doi: 10.1016/j.apsusc.2017.05.189. DOI

Zhang S. Zhu J. Qing Y. Fan C. Wang L. Huang Y. Sheng R. Guo Y. Wang T. Pan Y. Lv Y. Song H. Jia D. Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes. Mater. Today Energy. 2017;6:36–46. doi: 10.1016/j.mtener.2017.08.003. DOI

Luo P. Guan X. Yu Y. Li X. Yan F. Hydrothermal synthesis of graphene quantum dots supported on three-dimension graphene for supercapacitor. Nanomaterials. 2019;9(2):201. doi: 10.3390/nano9020201. PubMed DOI PMC

Jin J. Zhou Y. Xiong Z. Guo G. Sun Y. Li D. Liu Y. Stable GQD@PANi nanocomposites based on benzenoid structure for enhanced specific capacitance. Int. J. Hydrogen Energy. 2018;43(17):8426–8439. doi: 10.1016/j.ijhydene.2018.03.133. DOI

Syed Zainol Abidin S. N. J. Mamat S. Abdul Rasyid S. Zainal Z. Sulaiman Y. Fabrication of poly(vinylalcohol)-graphene quantum dots coated with poly(3,4-ethylenedioxythiophene) for supercapacitor. J. Polym. Sci., Part A: Polym. Chem. 2017;56(1):50–58. doi: 10.1002/pola.28859. DOI

Shi Y. Pan X. Li B. Zhao M. Pang H. Co3O4 and its composites for high-performance Li-ion batteries. Chem. Eng. J. 2018;343:427–446. doi: 10.1016/j.cej.2018.03.024. DOI

Huang B. Pan Z. Su X. An L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources. 2018;399:274–286. doi: 10.1016/j.jpowsour.2018.07.116. DOI

Mishra A. Akansha M. Basu S. Malode S. J. Shetti N. P. Shukla S. S. Nadagouda M. N. Aminabhavi T. M. Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 2018;1(2):182–187.

Deshmukh K. Khatake S. M. Joshi G. M. Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J. Polym. Res. 2013;20:286. doi: 10.1007/s10965-013-0286-2. DOI

Son Y. Park M. Son Y. Lee J. S. Jang J. H. Kim Y. Cho J. Quantum Confinement and Its Related Effects on the Critical Size of Geo2 Nanoparticles Anodes for Lithium Batteries. Nano Lett. 2014;14:1005–1010. doi: 10.1021/nl404466v. PubMed DOI

Park J. Moon J. Kim C. Kang J. H. Lim E. Park J. Lee K. J. Seung-Ho Y. Jung-Hye S. Lee J. Heo J. Tanaka N. Sung-Pyo C. Pyun J. Cabana J. Hong B. H. Sung Y. Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulphur batteries. NPG Asia Mater. 2016;8:e272. doi: 10.1038/am.2016.61. DOI

Chao D. Zhu C. Xia X. Liu J. Zhang X. Wang J. Liang P. Lin J. Zhang H. Shen Z. X. Fan H. J. Graphene quantum dots coated vo2 arrays for highly durable electrodes for li and na ion batteries. Nano Lett. 2014;15(1):565–573. doi: 10.1021/nl504038s. PubMed DOI

Jiang J. Li Y. Liu J. Huang X. Yuan C. Wen X. David) Lou Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012;24(38):5166–5180. doi: 10.1002/adma.201202146. PubMed DOI

Guo J. Zhu H. Sun Y. Tang L. Zhang X. Boosting the lithium storage performance of MoS2 with graphene quantum dots. J. Mater. Chem. A. 2016;4(13):4783–4789. doi: 10.1039/C6TA00592F. DOI

Lijuan K. Yongqiang Y. Ruiyi L. Zaijun L. Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance. Electrochim. Acta. 2016;198:144–155. doi: 10.1016/j.electacta.2016.03.034. DOI

Mahmoudi T. Wang Y. Hahn Y. B. Graphene and its derivatives for solar cells application. Nano Energy. 2018:51–65. doi: 10.1016/j.nanoen.2018.02.047. DOI

Sehgal P. Narula A. K. Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes. Opt. Mater. 2018;79:435–445. doi: 10.1016/j.optmat.2018.04.005. DOI

Iqbal M. N. Rehman A.-U. Recent progress in graphene incorporated solar cell devices. Sol. Energy. 2018;169:634–647. doi: 10.1016/j.solener.2018.04.041. DOI

Ding Z. Hao Z. Meng B. Xie Z. Liu J. Dai L. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy. 2015;15:186–192. doi: 10.1016/j.nanoen.2015.04.019. DOI

Yang H. B. Dong Y. Q. Wang X. Khoo S. Y. Liu B. Li C. M. Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells. Sol. Energy Mater. Sol. Cells. 2013;117:214–218. doi: 10.1016/j.solmat.2013.05.060. DOI

Subramanian A. Pan Z. Rong G. Li H. Zhou L. Li W. Qiu Y. Xu Y. Hou Y. Zheng Z. Zhang Y. Graphene quantum dot antennas for high efficiency forster resonance energy transfer based dye-sensitized solar cells. J. Power Sources. 2017;343:39–46. doi: 10.1016/j.jpowsour.2017.01.043. DOI

Zhang J. Tong T. Zhang L. Li X. Zou H. Yu J. Enhanced performance of planar perovskite solar cell by graphene quantum dot modification. ACS Sustainable Chem. Eng. 2018;6(7):8631–8640. doi: 10.1021/acssuschemeng.8b00938. DOI

Kolay A. Kokal R. K. Kalluri A. Macwan I. Patra P. K. Ghosal P. Deepa M. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum dots co-sensitized solar cell. ACS Appl. Mater. Interfaces. 2017;9(40):34915–34926. doi: 10.1021/acsami.7b09754. PubMed DOI

Xu H. Zhang L. Ding Z. Hu J. Liu J. Liu Y. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018;11:4293–4301. doi: 10.1007/s12274-018-2015-y. DOI

Xie J. Huang K. Yu X. Yang Z. Xiao K. Qiang Y. Zhu X. Xu L. Wang P. Cui C. Yang D. Enhanced electronic properties of sno2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano. 2017;11(9):9176–9182. doi: 10.1021/acsnano.7b04070. PubMed DOI

Teymourinia H. Salavati-Niasari M. Amiri O. Farangi M. Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J. Mol. Liquids. 2018;251:267–272. doi: 10.1016/j.molliq.2017.12.059. DOI

Gao P. Ding K. Wang Y. Ruan K. Diao S. Zhang Q. Sun B. Jie J. Crystalline si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C. 2014;C118(10):5164–5171. doi: 10.1021/jp412591k. DOI

Dutta M. Sarkar S. Ghosh T. Basak D. ZnO/Graphene Quantum Dot Solid-State Solar Cell. J. Phys. Chem. C. 2012;C116(38):20127–20131. doi: 10.1021/jp302992k. DOI

Briscoe J. Marinovic A. Sevilla M. Dunn S. Titirici M. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem., Int. Ed. 2015;54(15):4463–4468. doi: 10.1002/anie.201409290. PubMed DOI

Li X. Rui M. Song J. Shen Z. Zeng H. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 2015;25(31):4929–4947. doi: 10.1002/adfm.201501250. DOI

Xia H. Ma Z. Xiao Z. Zhou W. Zhang H. Du C. Zhuang J. Cheng X. Liu X. Huang Y. Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells. Org. Electron. 2019:105415. doi: 10.1016/j.orgel.2019.105415. DOI

Di Carlo G. Biroli A. O. Tessore F. Caramori S. Pizzotti M. β-Substituted ZnII porphyrins as dyes for DSSC: a possible approach to photovoltaic windows. Coord. Chem. Rev. 2018;358:153–177. doi: 10.1016/j.ccr.2017.12.012. DOI

Fang X. Li M. Guo K. Li J. Pan M. Bai L. Luoshan M. Zhao X. Graphene quantum dots optimization of dye-sensitized solar cells. Electrochim. Acta. 2014;137:634–638. doi: 10.1016/j.electacta.2014.06.075. DOI

Mihalache I. Radoi A. Mihaila M. Munteanu C. Marin A. Danila M. Kusko M. Kusko C. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots. Electrochim. Acta. 2015;153:306–315. doi: 10.1016/j.electacta.2014.11.200. DOI

Liu T. Yu K. Gao L. Chen H. Wang N. Hao L. Li T. He H. Guo Z. A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A. 2017;5(34):17848–17855. doi: 10.1039/C7TA05123A. DOI

Kundu S. Sarojinijeeva P. Karthick R. Enhancing the efficiency of DSSCs by the modification of TiO2 photoanodes using N, F and S, co-doped Graphene Quantum Dots. Electrochim. Acta. 2017;242:337–343. doi: 10.1016/j.electacta.2017.05.024. DOI

Yeh T.-F. Chen S.-J. Teng H. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy. 2015;12:476–485. doi: 10.1016/j.nanoen.2015.01.021. DOI

Nguyen B.-S. Xiao Y.-K. Shih C.-Y. Nguyen V.-C. Chou W.-Y. Teng H. Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale. 2018;10:10721–10730. doi: 10.1039/C8NR02441C. PubMed DOI

Zhou X. Tian Z. Li J. Ruan H. Ma Y. Yang Z. Qu Y. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale. 2014;6:2603–2607. doi: 10.1039/C3NR05578G. PubMed DOI

Xu C. Han Q. Zhao Y. Wang L. Li Y. Qu L. Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. J. Mater. Chem. A. 2015;3:1841–1846. doi: 10.1039/C4TA06149G. DOI

Fei H. Ye R. Ye G. Gong Y. Peng Z. Fan X. Samuel E. L. G. Ajayan P. M. Tour J. M. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano. 2014;8:10837–10843. doi: 10.1021/nn504637y. PubMed DOI

Wu J. Ma S. Sun J. Gold J. I. Tiwary C. Kim B. Zhu L. Chopra N. Odeh I. N. Vajtai R. Yu A. Z. Luo R. Lou J. Ding G. Kenis P. J. A. Ajayan P. M. A Metal-Free Electrocatalyst for Carbon Dioxide Reduction to Multi-Carbon Hydrocarbons and Oxygenates. Nat. Commun. 2016;7:13869. doi: 10.1038/ncomms13869. PubMed DOI PMC

Fu J. Wang Y. Liu J. Huang K. Chen Y. Li Y. Zhu J.-J. Low overpotential for electrochemically reducing CO2 to CO on nitrogen-doped Graphene quantum dots-wrapped single-crystalline gold nanoparticles. ACS Energy Lett. 2018;3:946–951. doi: 10.1021/acsenergylett.8b00261. DOI

Guo C. X. Dong Y. Q. Yang H. B. Li C. M. A new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures. Adv. Energy Mater. 2013;3:997–1003. doi: 10.1002/aenm.201300171. PubMed DOI PMC

Moon J. An J. Sim U. Cho S.-P. Kang J. H. Chung C. Seo J.-H. Lee J. Nam K. T. Hong B. H. One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Adv. Mater. 2014;26:3501–3505. doi: 10.1002/adma.201306287. PubMed DOI PMC

Sim U. Moon J. An J. Kang J. H. Jerng S. E. Moon J. Cho S.-P. Hong B. H. Nam K. T. N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci. 2015;8:1329–1338. doi: 10.1039/C4EE03607G. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...