A novel flexible CO2 gas sensor based on polyvinyl alcohol/yttrium oxide nanocomposite films

. 2024 Feb 07 ; 14 (8) : 5022-5036. [epub] 20240208

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38332782

Polyvinyl alcohol/yttrium oxide (PVA/Y2O3) nanocomposite films with five different weight ratios of PVA and Y2O3 nanoparticles (NPs) were prepared using a simple solution casting method. The prepared polymer nanocomposite (PNC) films were examined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). FTIR spectra exhibited a strong interaction between the PVA matrix and Y2O3 NPs. SEM results indicated that Y2O3 NPs were properly dispersed in the PVA matrix. The thermal stability of the PVA/Y2O3 nanocomposite films was found to be dependent on Y2O3 NP loading (wt%) in the nanocomposite films. Furthermore, chemiresistive gas sensing properties of the PVA/Y2O3 nanocomposite films were evaluated and the sensing parameters including sensing response, operating temperature, selectivity, stability, response/recovery time, and repeatability were systematically investigated based on the change in electrical resistance of the nanocomposite film in the presence of carbon dioxide (CO2) gas. The maximum sensing response (S) of 92.72% at a concentration of 100 ppm under an optimized operating temperature of 100 °C with a fast response/recovery time of ∼15/11 s towards CO2 gas detection was observed for the PVA/Y2O3 nanocomposite film with 5 wt% loading of Y2O3 NPs in the PVA matrix. The finding in this work suggest that Y2O3 NPs are sufficiently fast as a CO2 gas sensing material at a relatively low operating temperature. Moreover, the key role of the Y2O3 NPs in modulating the electrical and gas sensing properties of the PVA matrix is discussed here.

Zobrazit více v PubMed

Bittencourt J. C. de Santana Gois B. H. Rodrigues de Oliveira V. J. da Silva Agostini D. L. de Almeida Olivati C. J. Appl. Polym. Sci. 2019;136:47288.

Thangamani J. G. Deshmukh K. Kumar Sadasivuni K. Chidambaram K. Basheer Ahamed M. Ponnamma D. Al-Ali AlMaadeed M. Khadheer Pasha S. K. Adv. Mater. Lett. 2017;8:196–205.

Thangamani G. J. Deshmukh K. Kovářík T. Nambiraj N. A. Ponnamma D. Sadasivuni K. K. Khalil H. A. Pasha S. K. Chemosphere. 2021;280:130641. PubMed

Kumar Y. R. Deshmukh K. Sadasivuni K. K. Pasha S. K. RSC Adv. 2020;10:23861–23898. PubMed PMC

Kumar Y. R. Deshmukh K. Kovářík T. Pasha S. K. Coord. Chem. Rev. 2022;461:214502.

Sumangala T. P. Pasquet I. Presmanes L. Thimont Y. Bonningue C. Venkataramani N. Prasad S. Baco-Carles V. Tailhades P. Barnabé A. Ceram. Int. 2018;44:18578–18584.

Devkota J. Kim K. J. Ohodnicki P. R. Culp J. T. Greve D. W. Lekse J. W. Nanoscale. 2018;10:8075–8087. PubMed

Nemade K. R. Waghuley S. A. Int. J. Mod. Phys. Conf. 2013;22:380–384.

Kawahata H. Fujita K. Iguchi A. Inoue M. Iwasaki S. Kuroyanagi A. Maeda A. Manaka T. Moriya K. Takagi H. Toyofuku T. Prog. Earth Planet. Sci. 2019;6:1–37.

Naganaboina V. R. Anandkumar M. Deshpande A. S. Singh S. G. ACS Appl. Nano Mater. 2022;5:4524–4536.

Eggleton T., A Short Introduction to Climate Change, Cambridge University Press, 2021, p. 52

UN News – Climate and Environment, 2022

Bag S. Pal K. Sens. Actuators, B. 2020;303:127115.

Joshi S. Lanka S. Ippolito S. J. Bhargava S. K. Sunkara M. V. J. Mater. Chem. A. 2016;4:16418–16431.

Joshi S. Antolasic F. Sunkara M. V. Bhargava S. K. Ippolito S. J. ACS Sustain. Chem. Eng. 2018;6:4086–4097.

Gheorghe A. Lugier O. Ye B. Tanase S. J. Mater. Chem. C. 2021;9:16132–16142.

Hannon A. Li J. Sensors. 2019;19:3848. PubMed

Choudhary K. Saini R. Upadhyay G. K. Purohit L. P. J. Alloys Compd. 2021;879:160479.

Maheswari S. Karunakaran M. Kasirajan K. Chandrasekar L. B. Boomi P. Sens. Actuators, A. 2020;315:112303.

Yamamoto A. Shinkai T. Loy A. C. M. Mohamed M. Baldovino F. H. B. Yusup S. Quitain A. T. Kida T. Sens. Actuators, B. 2020;315:128105.

Abdali H. Heli B. Ajji A. Sensors. 2019;19:5215. PubMed PMC

Shinde P. V. Shinde N. M. Shaikh S. F. Lee D. Yun J. M. Woo L. J. Al-Enizi A. M. Mane R. S. Kim K. H. RSC Adv. 2020;10:17217–17227. PubMed PMC

Thangamani G. J. Pasha S. K. Chemosphere. 2021;277:130237. PubMed

Thangamani G. J. Deshmukh K. Nambiraj N. A. Pasha S. K. Synth. Met. 2021;273:116687.

Thangamani G. J. Pasha S. K. Chemosphere. 2021;275:129960. PubMed

Thangamani G. J. Deshmukh K. Chidambaram K. Ahamed M. B. Sadasivuni K. K. Ponnamma D. Faisal N. Nambiraj N. A. Pasha S. K. K. J. Mater. Sci.: Mater. Electron. 2018;29:5186–5205.

Chavan C. Bhajantri R. F. Bulla S. Ravikumar H. B. Raghavendra M. Sakthipandi K. Kumar K. Y. Prasanna B. P. Ceram. Int. 2022;48:17864–17884.

Afsharimani N. Nysten B. Bull. Mater. Sci. 2019;42:1–9.

Pasha S. K. Deshmukh K. Ahamed M. B. Chidambaram K. Mohanapriya M. K. Raj N. A. N. Adv. Polym. Technol. 2017;36:352–361.

Habeeb M. A. Mater. Focus. 2016;5:550–555.

Larimi Z. M., Amirabadizadeh A. and Zelati A., In Proceedings of the International Conference on Chemistry and Chemical Process IPCBEE, IACSIT Press, Singapore, 2011, pp. 86–90

Zheng J. Zhang T. Zeng H. Guo W. Zhao B. Sun Y. Li Y. Jiang L. Small. 2019;15:1804688. PubMed

Lozano-Rosas R. Lamas D. G. Sánchez-Ochoa F. Cocoletzi G. H. Karthik T. V. K. Robles-Águila M. J. Appl. Phys. A: Mater. Sci. Process. 2021;127:1–14.

Kumar Y. R. Deshmukh K. Ali M. N. N. Abhijay G. Al-Onazi W. A. Al-Mohaimeed A. M. Pasha S. K. Environ. Res. 2022;203:111842. PubMed

Kumar Y. R. Pasha S. K. Polym. Plast. Technol. Mater. 2022;61:1857–1870.

Alrowaili Z. A. Taha T. A. El-Nasser K. S. Donya H. J. Inorg. Organomet. Polym. Mater. 2021;31:3101–3110.

Mohanapriya M. K. Deshmukh K. Chidambaram K. Ahamed M. B. Sadasivuni K. K. Ponnamma D. AlMaadeed M. A. A. Deshmukh R. R. Pasha S. K. J. Mater. Sci. Mater. Electron. 2017;28:6099–6111.

Taha T. A. Elrabaie S. Attia M. T. J. Electron. Mater. 2019;48:6797–6806.

Jayasankar K. Pandey A. Mishra B. K. Das S. Mater. Chem. Phys. 2016;171:195–200.

Deshmukh K. Ahamed M. B. Deshmukh R. R. Bhagat P. R. Pasha S. K. Bhagat A. Shirbhate R. Telare F. Lakhani C. Polym. Plast. Technol. Eng. 2016;55:231–241.

Jeong J. Y. Park S. W. Moon D. K. Kim W. J. J. Ind. Eng. Chem. 2010;16:243–250.

Dong G. Chi Y. Xiao X. Liu X. Qian B. Ma Z. Wu E. Zeng H. Chen D. Qiu J. Opt. Express. 2009;17:22514–22519. PubMed

Sha Y. Dong T. Zhao Q. Zheng H. Wen X. Chen S. Zhang S. Ionics. 2020;26:4803–4812.

Gomaa M. M. Hugenschmidt C. Dickmann M. Abdel-Hady E. E. Mohamed H. F. Abdel-Hamed M. O. Phys. Chem. Chem. Phys. 2018;20:28287–28299. PubMed

Thangamani G. J. Deshmukh K. Sadasivuni K. K. Ponnamma D. Goutham S. Venkateswara Rao K. Chidambaram K. Basheer Ahamed M. Nirmala Grace A. Faisal M. Pasha S. K. K. Microchim. Acta. 2017;184:3977–3987.

Reddy P. L. Deshmukh K. Chidambaram K. Ali M. M. N. Sadasivuni K. K. Kumar Y. R. Lakshmipathy R. Pasha S. K. J. Mater. Sci.: Mater. Electron. 2019;30:4676–4687.

Merlini C. Barra G. M. O. Araujo T. M. Pegoretti A. RSC Adv. 2014;4:15749–15758.

Li W. Li H. Zhang Y. M. J. Mater. Sci. 2009;44:2977–2984.

Abadi M. S. Hamidon M. N. Shaari A. H. Abdullah N. Misron N. Wagiran R. Sensors. 2010;10:5074. PubMed PMC

Tripathy A. R. Chang C. Gupta S. Anbalagan A. K. Lee C. H. Li S. S. Tai N. H. ACS Appl. Nano Mater. 2022;5:6543–6554.

Gupta M. Hawari H. F. Kumar P. Burhanudin Z. A. Crystals. 2022;12:264.

Altun B. Karaduman Er I. Çağırtekin A. O. Ajjaq A. Sarf F. Acar S. Appl. Phys. A. 2021;127:687.

Thomas T. Kumar Y. Ramón J. A. R. Agarwal V. Guzmán S. S. Reshmi R. Pushpan S. Loredo S. L. Sanal K. C. Vacuum. 2021;184:109983.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...