A novel flexible CO2 gas sensor based on polyvinyl alcohol/yttrium oxide nanocomposite films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38332782
PubMed Central
PMC10851186
DOI
10.1039/d3ra04257j
PII: d3ra04257j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polyvinyl alcohol/yttrium oxide (PVA/Y2O3) nanocomposite films with five different weight ratios of PVA and Y2O3 nanoparticles (NPs) were prepared using a simple solution casting method. The prepared polymer nanocomposite (PNC) films were examined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). FTIR spectra exhibited a strong interaction between the PVA matrix and Y2O3 NPs. SEM results indicated that Y2O3 NPs were properly dispersed in the PVA matrix. The thermal stability of the PVA/Y2O3 nanocomposite films was found to be dependent on Y2O3 NP loading (wt%) in the nanocomposite films. Furthermore, chemiresistive gas sensing properties of the PVA/Y2O3 nanocomposite films were evaluated and the sensing parameters including sensing response, operating temperature, selectivity, stability, response/recovery time, and repeatability were systematically investigated based on the change in electrical resistance of the nanocomposite film in the presence of carbon dioxide (CO2) gas. The maximum sensing response (S) of 92.72% at a concentration of 100 ppm under an optimized operating temperature of 100 °C with a fast response/recovery time of ∼15/11 s towards CO2 gas detection was observed for the PVA/Y2O3 nanocomposite film with 5 wt% loading of Y2O3 NPs in the PVA matrix. The finding in this work suggest that Y2O3 NPs are sufficiently fast as a CO2 gas sensing material at a relatively low operating temperature. Moreover, the key role of the Y2O3 NPs in modulating the electrical and gas sensing properties of the PVA matrix is discussed here.
Department of Physics School of Advanced Sciences VIT University 632014 Vellore Tamil Nadu India
Department of Science and Humanities MLR Institute of Technology Hyderabad Telangana India
New Technologies Research Center University of West Bohemia Plzeň Czech Republic
Zobrazit více v PubMed
Bittencourt J. C. de Santana Gois B. H. Rodrigues de Oliveira V. J. da Silva Agostini D. L. de Almeida Olivati C. J. Appl. Polym. Sci. 2019;136:47288.
Thangamani J. G. Deshmukh K. Kumar Sadasivuni K. Chidambaram K. Basheer Ahamed M. Ponnamma D. Al-Ali AlMaadeed M. Khadheer Pasha S. K. Adv. Mater. Lett. 2017;8:196–205.
Thangamani G. J. Deshmukh K. Kovářík T. Nambiraj N. A. Ponnamma D. Sadasivuni K. K. Khalil H. A. Pasha S. K. Chemosphere. 2021;280:130641. PubMed
Kumar Y. R. Deshmukh K. Sadasivuni K. K. Pasha S. K. RSC Adv. 2020;10:23861–23898. PubMed PMC
Kumar Y. R. Deshmukh K. Kovářík T. Pasha S. K. Coord. Chem. Rev. 2022;461:214502.
Sumangala T. P. Pasquet I. Presmanes L. Thimont Y. Bonningue C. Venkataramani N. Prasad S. Baco-Carles V. Tailhades P. Barnabé A. Ceram. Int. 2018;44:18578–18584.
Devkota J. Kim K. J. Ohodnicki P. R. Culp J. T. Greve D. W. Lekse J. W. Nanoscale. 2018;10:8075–8087. PubMed
Nemade K. R. Waghuley S. A. Int. J. Mod. Phys. Conf. 2013;22:380–384.
Kawahata H. Fujita K. Iguchi A. Inoue M. Iwasaki S. Kuroyanagi A. Maeda A. Manaka T. Moriya K. Takagi H. Toyofuku T. Prog. Earth Planet. Sci. 2019;6:1–37.
Naganaboina V. R. Anandkumar M. Deshpande A. S. Singh S. G. ACS Appl. Nano Mater. 2022;5:4524–4536.
Eggleton T., A Short Introduction to Climate Change, Cambridge University Press, 2021, p. 52
UN News – Climate and Environment, 2022
Bag S. Pal K. Sens. Actuators, B. 2020;303:127115.
Joshi S. Lanka S. Ippolito S. J. Bhargava S. K. Sunkara M. V. J. Mater. Chem. A. 2016;4:16418–16431.
Joshi S. Antolasic F. Sunkara M. V. Bhargava S. K. Ippolito S. J. ACS Sustain. Chem. Eng. 2018;6:4086–4097.
Gheorghe A. Lugier O. Ye B. Tanase S. J. Mater. Chem. C. 2021;9:16132–16142.
Hannon A. Li J. Sensors. 2019;19:3848. PubMed
Choudhary K. Saini R. Upadhyay G. K. Purohit L. P. J. Alloys Compd. 2021;879:160479.
Maheswari S. Karunakaran M. Kasirajan K. Chandrasekar L. B. Boomi P. Sens. Actuators, A. 2020;315:112303.
Yamamoto A. Shinkai T. Loy A. C. M. Mohamed M. Baldovino F. H. B. Yusup S. Quitain A. T. Kida T. Sens. Actuators, B. 2020;315:128105.
Abdali H. Heli B. Ajji A. Sensors. 2019;19:5215. PubMed PMC
Shinde P. V. Shinde N. M. Shaikh S. F. Lee D. Yun J. M. Woo L. J. Al-Enizi A. M. Mane R. S. Kim K. H. RSC Adv. 2020;10:17217–17227. PubMed PMC
Thangamani G. J. Pasha S. K. Chemosphere. 2021;277:130237. PubMed
Thangamani G. J. Deshmukh K. Nambiraj N. A. Pasha S. K. Synth. Met. 2021;273:116687.
Thangamani G. J. Pasha S. K. Chemosphere. 2021;275:129960. PubMed
Thangamani G. J. Deshmukh K. Chidambaram K. Ahamed M. B. Sadasivuni K. K. Ponnamma D. Faisal N. Nambiraj N. A. Pasha S. K. K. J. Mater. Sci.: Mater. Electron. 2018;29:5186–5205.
Chavan C. Bhajantri R. F. Bulla S. Ravikumar H. B. Raghavendra M. Sakthipandi K. Kumar K. Y. Prasanna B. P. Ceram. Int. 2022;48:17864–17884.
Afsharimani N. Nysten B. Bull. Mater. Sci. 2019;42:1–9.
Pasha S. K. Deshmukh K. Ahamed M. B. Chidambaram K. Mohanapriya M. K. Raj N. A. N. Adv. Polym. Technol. 2017;36:352–361.
Habeeb M. A. Mater. Focus. 2016;5:550–555.
Larimi Z. M., Amirabadizadeh A. and Zelati A., In Proceedings of the International Conference on Chemistry and Chemical Process IPCBEE, IACSIT Press, Singapore, 2011, pp. 86–90
Zheng J. Zhang T. Zeng H. Guo W. Zhao B. Sun Y. Li Y. Jiang L. Small. 2019;15:1804688. PubMed
Lozano-Rosas R. Lamas D. G. Sánchez-Ochoa F. Cocoletzi G. H. Karthik T. V. K. Robles-Águila M. J. Appl. Phys. A: Mater. Sci. Process. 2021;127:1–14.
Kumar Y. R. Deshmukh K. Ali M. N. N. Abhijay G. Al-Onazi W. A. Al-Mohaimeed A. M. Pasha S. K. Environ. Res. 2022;203:111842. PubMed
Kumar Y. R. Pasha S. K. Polym. Plast. Technol. Mater. 2022;61:1857–1870.
Alrowaili Z. A. Taha T. A. El-Nasser K. S. Donya H. J. Inorg. Organomet. Polym. Mater. 2021;31:3101–3110.
Mohanapriya M. K. Deshmukh K. Chidambaram K. Ahamed M. B. Sadasivuni K. K. Ponnamma D. AlMaadeed M. A. A. Deshmukh R. R. Pasha S. K. J. Mater. Sci. Mater. Electron. 2017;28:6099–6111.
Taha T. A. Elrabaie S. Attia M. T. J. Electron. Mater. 2019;48:6797–6806.
Jayasankar K. Pandey A. Mishra B. K. Das S. Mater. Chem. Phys. 2016;171:195–200.
Deshmukh K. Ahamed M. B. Deshmukh R. R. Bhagat P. R. Pasha S. K. Bhagat A. Shirbhate R. Telare F. Lakhani C. Polym. Plast. Technol. Eng. 2016;55:231–241.
Jeong J. Y. Park S. W. Moon D. K. Kim W. J. J. Ind. Eng. Chem. 2010;16:243–250.
Dong G. Chi Y. Xiao X. Liu X. Qian B. Ma Z. Wu E. Zeng H. Chen D. Qiu J. Opt. Express. 2009;17:22514–22519. PubMed
Sha Y. Dong T. Zhao Q. Zheng H. Wen X. Chen S. Zhang S. Ionics. 2020;26:4803–4812.
Gomaa M. M. Hugenschmidt C. Dickmann M. Abdel-Hady E. E. Mohamed H. F. Abdel-Hamed M. O. Phys. Chem. Chem. Phys. 2018;20:28287–28299. PubMed
Thangamani G. J. Deshmukh K. Sadasivuni K. K. Ponnamma D. Goutham S. Venkateswara Rao K. Chidambaram K. Basheer Ahamed M. Nirmala Grace A. Faisal M. Pasha S. K. K. Microchim. Acta. 2017;184:3977–3987.
Reddy P. L. Deshmukh K. Chidambaram K. Ali M. M. N. Sadasivuni K. K. Kumar Y. R. Lakshmipathy R. Pasha S. K. J. Mater. Sci.: Mater. Electron. 2019;30:4676–4687.
Merlini C. Barra G. M. O. Araujo T. M. Pegoretti A. RSC Adv. 2014;4:15749–15758.
Li W. Li H. Zhang Y. M. J. Mater. Sci. 2009;44:2977–2984.
Abadi M. S. Hamidon M. N. Shaari A. H. Abdullah N. Misron N. Wagiran R. Sensors. 2010;10:5074. PubMed PMC
Tripathy A. R. Chang C. Gupta S. Anbalagan A. K. Lee C. H. Li S. S. Tai N. H. ACS Appl. Nano Mater. 2022;5:6543–6554.
Gupta M. Hawari H. F. Kumar P. Burhanudin Z. A. Crystals. 2022;12:264.
Altun B. Karaduman Er I. Çağırtekin A. O. Ajjaq A. Sarf F. Acar S. Appl. Phys. A. 2021;127:687.
Thomas T. Kumar Y. Ramón J. A. R. Agarwal V. Guzmán S. S. Reshmi R. Pushpan S. Loredo S. L. Sanal K. C. Vacuum. 2021;184:109983.