Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26762211
DOI
10.1021/acsami.5b10160
Knihovny.cz E-zdroje
- Klíčová slova
- biosensor, carbon quantum dot, carboxylic groups, fluorescence, nucleic acid, quenching,
- MeSH
- DNA analýza MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- fotoelektronová spektroskopie MeSH
- kalibrace MeSH
- kvantové tečky chemie MeSH
- kyseliny karboxylové chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- fluorescenční barviva MeSH
- kyseliny karboxylové MeSH
- uhlík MeSH
The demand for simple, sensitive, affordable, and selective DNA biosensors is ubiquitous, due to the important role that DNA detection performs in the areas of disease diagnostics, environment monitoring, and food safety. A novel application of carboxylic carbon quantum dots (cCQD) is highlighted in this study. Herein, cCQD function as a nanoquencher in the detection of nucleic acid based on a homogeneous fluorescent assay. To that purpose, the performance of two types of cCQD, namely, citric acid QD and malic acid QD, is evaluated. The principle behind the sensing of nucleic acid lies in the different propensity of single-stranded DNA and double-stranded DNA to adsorb onto the surface of cCQD. For both types of cCQD, a superior range of detection of at least 3 orders of magnitude is achieved, and the potential to distinguish single-base mismatch is also exhibited. These findings are anticipated to provide valuable insights on the employment of cCQD for the fabrication of future DNA biosensors.
Citace poskytuje Crossref.org
Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA
Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA