Micromachines for Microplastics Treatment

. 2022 Jun 15 ; 2 (3) : 225-232. [epub] 20220214

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37101823

The increasing accumulation of persistent nondegradable microplastics in the marine environment represents a global environmental problem. Among emerging approaches to tackle microplastics are micro- and nanomotors, tiny devices capable of autonomous propulsion powered by chemical fuels or light. These devices are capable of on-the-fly recognition, capture, and decomposition of pollutants. In the past, various micromotors were designed to efficiently remove and degrade soluble organic pollutants. Current effort is given to the rational design and surface functionalization to achieve micromotors capable of capturing, transporting, and releasing microplastics of different shapes and chemical structures. The catalytic micromotors performing photocatalysis and photo-Fenton chemistry hold great promise for the degradation of most common plastics. In this review, we highlight recent progress in the field of micromotors for microplastics treatment. These tiny self-propelled machines are expected to stimulate a quantum leap in environmental remediation.

Zobrazit více v PubMed

Merga L. B.; Redondo-Hasselerharm P. E.; van den Brink P. J.; Koelmans A. A. Distribution of Microplastic and Small Macroplastic Particles across Four Fish Species and Sediment in an African Lake. Science of The Total Environment 2020, 741, 140527.10.1016/j.scitotenv.2020.140527. PubMed DOI

Dey T. K.; Uddin Md. E.; Jamal M. Detection and Removal of Microplastics in Wastewater: Evolution and Impact. Environmental Science and Pollution Research 2021, 28 (14), 16925–16947. 10.1007/s11356-021-12943-5. PubMed DOI PMC

Campanale C.; Massarelli C.; Savino I.; Locaputo V.; Uricchio V. F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International journal of environmental research and public health 2020, 17 (4), 1212.10.3390/ijerph17041212. PubMed DOI PMC

Li Q.; Ma C.; Zhang Q.; Shi H. Microplastics in Shellfish and Implications for Food Safety. Current Opinion in Food Science 2021, 40, 192–197. 10.1016/j.cofs.2021.04.017. DOI

Rodrigues D.; Antunes J.; Otero V.; Sobral P.; Costa M. H. Distribution Patterns of Microplastics in Seawater Surface at a Portuguese Estuary and Marine Park. Frontiers in Environmental Science 2020, 8, 254.10.3389/fenvs.2020.582217. DOI

de Haan W. P.; Sanchez-Vidal A.; Canals M. Floating Microplastics and Aggregate Formation in the Western Mediterranean Sea. Mar. Pollut. Bull. 2019, 140, 523–535. 10.1016/j.marpolbul.2019.01.053. PubMed DOI

Chamas A.; Moon H.; Zheng J.; Qiu Y.; Tabassum T.; Jang J. H.; Abu-Omar M.; Scott S. L.; Suh S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 2020, 8 (9), 3494–3511. 10.1021/acssuschemeng.9b06635. DOI

Padervand M.; Lichtfouse E.; Robert D.; Wang C. Removal of Microplastics from the Environment. A Review. Environmental Chemistry Letters 2020, 18 (3), 807–828. 10.1007/s10311-020-00983-1. DOI

Pizzichetti A. R. P.; Pablos C.; Álvarez-Fernández C.; Reynolds K.; Stanley S.; Marugán J. Evaluation of Membranes Performance for Microplastic Removal in a Simple and Low-Cost Filtration System. Case Studies in Chemical and Environmental Engineering 2021, 3, 100075.10.1016/j.cscee.2020.100075. DOI

Talvitie J.; Mikola A.; Koistinen A.; Setälä O. Solutions to Microplastic Pollution – Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Res. 2017, 123, 401–407. 10.1016/j.watres.2017.07.005. PubMed DOI

Talvitie J.; Mikola A.; Setälä O.; Heinonen M.; Koistinen A. How Well Is Microlitter Purified from Wastewater? – A Detailed Study on the Stepwise Removal of Microlitter in a Tertiary Level Wastewater Treatment Plant. Water Res. 2017, 109, 164–172. 10.1016/j.watres.2016.11.046. PubMed DOI

Liang C.; Zhan C.; Zeng F.; Xu D.; Wang Y.; Zhao W.; Zhang J.; Guo J.; Feng H.; Ma X. Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation. ACS Appl. Mater. Interfaces 2018, 10 (41), 35099–35107. 10.1021/acsami.8b10921. PubMed DOI

Lin X.; Xu B.; Zhu H.; Liu J.; Solovev A.; Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. Research 2020, 2020, 7659749.10.34133/2020/7659749. PubMed DOI PMC

Parmar J.; Vilela D.; Villa K.; Wang J.; Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140 (30), 9317–9331. 10.1021/jacs.8b05762. PubMed DOI

Li J.; Singh V. v; Sattayasamitsathit S.; Orozco J.; Kaufmann K.; Dong R.; Gao W.; Jurado-Sanchez B.; Fedorak Y.; Wang J. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano 2014, 8 (11), 11118–11125. 10.1021/nn505029k. PubMed DOI

Sun J.; Tan H.; Lan S.; Peng F.; Tu Y. Progress on the Fabrication Strategies of Self-Propelled Micro/Nanomotors. JCIS Open 2021, 2, 100011.10.1016/j.jciso.2021.100011. DOI

Jurado-Sánchez B.; Wang J. Micromotors for Environmental Applications. A Review. Environ. Sci.: Nano 2018, 5, 1530–1544. 10.1039/C8EN00299A. DOI

Srivastava S. K.; Guix M.; Schmidt O. G. Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning. Nano Lett. 2016, 16 (1), 817–821. 10.1021/acs.nanolett.5b05032. PubMed DOI

Orozco J.; Cheng G.; Vilela D.; Sattayasamitsathit S.; Vazquez-Duhalt R.; Valdés-Ramírez G.; Pak O. S.; Escarpa A.; Kan C.; Wang J. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats. Angew. Chem., Int. Ed. 2013, 52 (50), 13276–13279. 10.1002/anie.201308072. PubMed DOI

Ciriminna R.; Albanese L.; Meneguzzo F.; Pagliaro M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9 (24), 3374–3381. 10.1002/cssc.201600895. PubMed DOI

Chen L.; Yuan H.; Chen S.; Zheng C.; Wu X.; Li Z.; Liang C.; Dai P.; Wang Q.; Ma X.; Yan X. Cost-Effective, High-Yield Production of Biotemplated Catalytic Tubular Micromotors as Self-Propelled Microcleaners for Water Treatment. ACS Appl. Mater. Interfaces 2021, 13 (26), 31226–31235. 10.1021/acsami.1c03595. PubMed DOI

Guix M.; Orozco J.; García M.; Gao W.; Sattayasamitsathit S.; Merkoçi A.; Escarpa A.; Wang J. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano 2012, 6 (5), 4445–4451. 10.1021/nn301175b. PubMed DOI

Yang J.; Li J.; Ng D. H. L.; Yang P.; Yang W.; Liu Y. Micromotor-Assisted Highly Efficient Fenton Catalysis by a Laccase/Fe-BTC-NiFe2O4 Nanozyme Hybrid with a 3D Hierarchical Structure. Environmental Science: Nano 2020, 7 (9), 2573–2583. 10.1039/C9EN01443H. DOI

Wang J.; Dong R.; Yang Q.; Wu H.; Bi Z.; Liang Q.; Wang Q.; Wang C.; Mei Y.; Cai Y. One Body, Two Hands: Photocatalytic Function- and Fenton Effect-Integrated Light-Driven Micromotors for Pollutant Degradation. Nanoscale 2019, 11 (35), 16592–16598. 10.1039/C9NR04295D. PubMed DOI

Vikrant K.; Kim K.-H. Metal–Organic Framework Micromotors: Perspectives for Environmental Applications. Catalysis Science & Technology 2021, 11 (20), 6592–6600. 10.1039/D1CY01124C. DOI

Amildon Ricardo I.; Paniagua C. E. S.; Paiva V. A. B.; Gonçalves B. R.; Sousa R. M. F.; Machado A. E. H.; Trovó A. G. Degradation and Initial Mechanism Pathway of Chloramphenicol by Photo-Fenton Process at Circumneutral pH. Chemical Engineering Journal 2018, 339, 531–538. 10.1016/j.cej.2018.01.144. DOI

Rodríguez-Narvaez O. M.; Goonetilleke A.; Perez L.; Bandala E. R. Engineered Technologies for the Separation and Degradation of Microplastics in Water: A Review. Chemical Engineering Journal 2021, 414, 128692.10.1016/j.cej.2021.128692. DOI

Ricardo I. A.; Alberto E. A.; Silva Júnior A. H.; Macuvele D. L. P.; Padoin N.; Soares C.; Gracher Riella H.; Starling M. C. V. M.; Trovó A. G. A Critical Review on Microplastics, Interaction with Organic and Inorganic Pollutants, Impacts and Effectiveness of Advanced Oxidation Processes Applied for Their Removal from Aqueous Matrices. Chemical Engineering Journal 2021, 424, 130282.10.1016/j.cej.2021.130282. DOI

Yuan K.; Pacheco M.; Jurado-Sánchez B.; Escarpa A. Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems 2021, 3 (6), 2100002.10.1002/aisy.202100002. DOI

Safdar M.; Minh T. D.; Kinnunen N.; Janis J. Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion. ACS Appl. Mater. Interfaces 2016, 8 (47), 32624–32629. 10.1021/acsami.6b12024. PubMed DOI

Safdar M.; Wani O. M.; Jänis J. Manganese Oxide-Based Chemically Powered Micromotors. ACS Appl. Mater. Interfaces 2015, 7 (46), 25580–25585. 10.1021/acsami.5b08789. PubMed DOI

Wu X.; Chen L.; Zheng C.; Yan X.; Dai P.; Wang Q.; Li W.; Chen W. Bubble-Propelled Micromotors Based on Hierarchical MnO2 Wrapped Carbon Nanotube Aggregates for Dynamic Removal of Pollutants. RSC Adv. 2020, 10 (25), 14846–14855. 10.1039/D0RA00626B. PubMed DOI PMC

Wani O. M.; Safdar M.; Kinnunen N.; Jänis J. Dual Effect of Manganese Oxide Micromotors: Catalytic Degradation and Adsorptive Bubble Separation of Organic Pollutants. Chem. Eur. J. 2016, 22 (4), 1244–1247. 10.1002/chem.201504474. PubMed DOI

He X.; Bahk Y. K.; Wang J. Organic Dye Removal by MnO2 and Ag Micromotors under Various Ambient Conditions: The Comparison between Two Abatement Mechanisms. Chemosphere 2017, 184, 601–608. 10.1016/j.chemosphere.2017.06.011. PubMed DOI

Wu J.; Zhang K.; Cen C.; Wu X.; Mao R.; Zheng Y. Role of Bulk Nanobubbles in Removing Organic Pollutants in Wastewater Treatment. AMB Express 2021, 11 (1), 96.10.1186/s13568-021-01254-0. PubMed DOI PMC

Ye H.; Wang Y.; Liu X.; Xu D.; Yuan H.; Sun H.; Wang S.; Ma X. Magnetically Steerable Iron Oxides-Manganese Dioxide Core–Shell Micromotors for Organic and Microplastic Removals. J. Colloid Interface Sci. 2021, 588, 510–521. 10.1016/j.jcis.2020.12.097. PubMed DOI

Renner G.; Nellessen A.; Schwiers A.; Wenzel M.; Schmidt T. C.; Schram J. Hydrophobicity–Water/Air–Based Enrichment Cell for Microplastics Analysis within Environmental Samples: A Proof of Concept. MethodsX 2020, 7, 100732.10.1016/j.mex.2019.11.006. PubMed DOI PMC

Wang L.; Kaeppler A.; Fischer D.; Simmchen J. Photocatalytic TiO2Micromotors for Removal of Microplastics and Suspended Matter. ACS Appl. Mater. Interfaces 2019, 11 (36), 32937–32944. 10.1021/acsami.9b06128. PubMed DOI

Yuan F.; Yue L.; Zhao H.; Wu H. Study on the Adsorption of Polystyrene Microplastics by Three-Dimensional Reduced Graphene Oxide. Water Sci. Technol. 2020, 81 (10), 2163–2175. 10.2166/wst.2020.269. PubMed DOI

Wang Z.; Yang H.-C.; He F.; Peng S.; Li Y.; Shao L.; Darling S. B. Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 2019, 1 (1), 115–155. 10.1016/j.matt.2019.05.002. DOI

Lee H.; Dellatore S. M.; Miller W. M.; Messersmith P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318 (5849), 426–430. 10.1126/science.1147241. PubMed DOI PMC

Grewal M. S.; Abe H.; Matsuo Y.; Yabu H. Aqueous Dispersion and Tuning Surface Charges of Polytetrafluoroethylene Particles by Bioinspired Polydopamine–Polyethyleneimine Coating via One-Step Method. Royal Society Open Science 2021, 8 (8), 210582.10.1098/rsos.210582. PubMed DOI PMC

Yu J.; Kan Y.; Rapp M.; Danner E.; Wei W.; Das S.; Miller D. R.; Chen Y.; Waite J. H.; Israelachvili J. N. Adaptive Hydrophobic and Hydrophilic Interactions of Mussel Foot Proteins with Organic Thin Films. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (39), 15680.10.1073/pnas.1315015110. PubMed DOI PMC

Lu Q.; Danner E.; Waite J. H.; Israelachvili J. N.; Zeng H.; Hwang D. S. Adhesion of Mussel Foot Proteins to Different Substrate Surfaces. Journal of The Royal Society Interface 2013, 10 (79), 20120759.10.1098/rsif.2012.0759. PubMed DOI PMC

Zhou H.; Mayorga-Martinez C. C.; Pumera M. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods 2021, 5 (9), 2100230.10.1002/smtd.202100230. PubMed DOI

Austin H. P.; Allen M. D.; Donohoe B. S.; Rorrer N. A.; Kearns F. L.; Silveira R. L.; Pollard B. C.; Dominick G.; Duman R.; el Omari K.; Mykhaylyk V.; Wagner A.; Michener W. E.; Amore A.; Skaf M. S.; Crowley M. F.; Thorne A. W.; Johnson C. W.; Woodcock H. L.; McGeehan J. E.; Beckham G. T. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (19), E4350.10.1073/pnas.1718804115. PubMed DOI PMC

Sun M.; Chen W.; Fan X.; Tian C.; Sun L.; Xie H. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Applied Materials Today 2020, 20, 100682.10.1016/j.apmt.2020.100682. DOI

Ageitos J. M.; Robla S.; Valverde-Fraga L.; Garcia-Fuentes M.; Csaba N. Purification of Hollow Sporopollenin Microcapsules from Sunflower and Chamomile Pollen Grains. Polymers 2021, 13 (13), 2094.10.3390/polym13132094. PubMed DOI PMC

Eskandarloo H.; Kierulf A.; Abbaspourrad A. Light-Harvesting Synthetic Nano- and Micromotors: A Review. Nanoscale 2017, 9 (34), 12218–12230. 10.1039/C7NR05166B. PubMed DOI

Chen H.; Zhao Q.; Du X. Light-Powered Micro/Nanomotors. Micromachines 2018, 9 (2), 41.10.3390/mi9020041. PubMed DOI PMC

Mou F.; Kong L.; Chen C.; Chen Z.; Xu L.; Guan J. Light-Controlled Propulsion, Aggregation and Separation of Water-Fuelled TiO2/Pt Janus Submicromotors and Their “on-the-Fly” Photocatalytic Activities. Nanoscale 2016, 8 (9), 4976–4983. 10.1039/C5NR06774J. PubMed DOI

Vutukuri H. R.; Lisicki M.; Lauga E.; Vermant J. Light-Switchable Propulsion of Active Particles with Reversible Interactions. Nat. Commun. 2020, 11 (1), 2628.10.1038/s41467-020-15764-1. PubMed DOI PMC

Zhu Z.; Wan S.; Zhao Y.; Qin Y.; Ge X.; Zhong Q.; Bu Y. Recent Progress in Bi2WO6-Based Photocatalysts for Clean Energy and Environmental Remediation: Competitiveness, Challenges, and Future Perspectives. Nano Select 2021, 2 (2), 187–215. 10.1002/nano.202000127. DOI

Villa K.; Děkanovský L.; Plutnar J.; Kosina J.; Pumera M. Swarming of Perovskite-Like Bi2WO6 Microrobots Destroy Textile Fibers under Visible Light. Adv. Funct. Mater. 2020, 30, 2007073.10.1002/adfm.202007073. DOI

Ó Briain O.; Marques Mendes A. R.; McCarron S.; Healy M. G.; Morrison L. The Role of Wet Wipes and Sanitary Towels as a Source of White Microplastic Fibres in the Marine Environment. Water Res. 2020, 182, 116021.10.1016/j.watres.2020.116021. PubMed DOI

Villa K.; Novotný F.; Zelenka J.; Browne M. P.; Ruml T.; Pumera M. Visible-Light-Driven Single-Component BiVO4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano 2019, 13 (7), 8135–8145. 10.1021/acsnano.9b03184. PubMed DOI

Beladi-Mousavi S. M.; Hermanová S.; Ying Y.; Plutnar J.; Pumera M. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Appl. Mater. Interfaces 2021, 13 (21), 25102–25110. 10.1021/acsami.1c04559. PubMed DOI

Wang G.-X.; Huang D.; Ji J.-H.; Völker C.; Wurm F. R. Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Advanced Science 2021, 8 (1), 2001121.10.1002/advs.202001121. PubMed DOI PMC

Ouyang Z.; Yang Y.; Zhang C.; Zhu S.; Qin L.; Wang W.; He D.; Zhou Y.; Luo H.; Qin F. Recent Advances in Photocatalytic Degradation of Plastics and Plastic-Derived Chemicals. Journal of Materials Chemistry A 2021, 9 (23), 13402–13441. 10.1039/D0TA12465F. DOI

Etacheri V.; di Valentin C.; Schneider J.; Bahnemann D.; Pillai S. C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25, 1–29. 10.1016/j.jphotochemrev.2015.08.003. DOI

Hayyan M.; Hashim M. A.; AlNashef I. M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116 (5), 3029–3085. 10.1021/acs.chemrev.5b00407. PubMed DOI

Tofa T. S.; Kunjali K. L.; Paul S.; Dutta J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environmental Chemistry Letters 2019, 17 (3), 1341–1346. 10.1007/s10311-019-00859-z. DOI

Norrish R. G. W.; Bamford C. H. Photo-Decomposition of Aldehydes and Ketones. Nature 1937, 140 (3535), 195–196. 10.1038/140195b0. DOI

Bamford C. H.; Norrish R. G. W. 287. Primary Photochemical Reactions. Part X. The Photolysis of Cyclic Ketones in the Gas Phase. Journal of the Chemical Society (Resumed) 1938, 1521–1531. 10.1039/jr9380001521. DOI

Fenton H. J. H. LXXIII.—Oxidation of Tartaric Acid in Presence of Iron. Journal of the Chemical Society, Transactions 1894, 65 (0), 899–910. 10.1039/CT8946500899. DOI

Haber F.; Willstätter R. Unpaarigkeit Und Radikalketten Im Reaktionsmechanismus Organischer Und Enzymatischer Vorgänge. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1931, 64 (11), 2844–2856. 10.1002/cber.19310641118. DOI

Ameta R. K.; Chohadia A.; Jain A.; Punjabi P. B.. Chapter 3: Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Waste Water Treatment; Ameta S. C., Ameta R., Eds.; Academic Press, 2018; pp 49–87.

Hussain S.; Aneggi E.; Goi D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environmental Chemistry Letters 2021, 19 (3), 2405–2424. 10.1007/s10311-021-01185-z. DOI

Huang X.; Hou X.; Zhao J.; Zhang L. Hematite Facet Confined Ferrous Ions as High Efficient Fenton Catalysts to Degrade Organic Contaminants by Lowering H2O2 Decomposition Energetic Span. Applied Catalysis B: Environmental 2016, 181, 127–137. 10.1016/j.apcatb.2015.06.061. DOI

Wang J.; Tang J. Fe-Based Fenton-like Catalysts for Water Treatment: Preparation, Characterization and Modification. Chemosphere 2021, 276, 130177.10.1016/j.chemosphere.2021.130177. PubMed DOI

Thomas N.; Dionysiou D. D.; Pillai S. C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. Journal of Hazardous Materials 2021, 404, 124082.10.1016/j.jhazmat.2020.124082. PubMed DOI PMC

Gligorovski S.; Strekowski R.; Barbati S.; Vione D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115 (24), 13051–13092. 10.1021/cr500310b. PubMed DOI

Soler L.; Magdanz V.; Fomin V. M.; Sanchez S.; Schmidt O. G. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano 2013, 7 (11), 9611–9620. 10.1021/nn405075d. PubMed DOI PMC

Walling S. A.; Um W.; Corkhill C. L.; Hyatt N. C. Fenton and Fenton-like Wet Oxidation for Degradation and Destruction of Organic Radioactive Wastes. npj Materials Degradation 2021, 5 (1), 50.10.1038/s41529-021-00192-3. DOI

Chow C.-F.; Wong W.-L.; Ho K. Y.-F.; Chan C.-S.; Gong C.-B. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals. Chem. Eur. J. 2016, 22 (28), 9513–9518. 10.1002/chem.201600856. PubMed DOI

Feng H.-M.; Zheng J.-C.; Lei N.-Y.; Yu L.; Kong K. H.-K.; Yu H.-Q.; Lau T.-C.; Lam M. H. W. Photoassisted Fenton Degradation of Polystyrene. Environ. Sci. Technol. 2011, 45 (2), 744–750. 10.1021/es102182g. PubMed DOI

Chow C.-F.; Wong W.-L.; Chan C.-W.; Chan C.-S. Converting Inert Plastic Waste into Energetic Materials: A Study on the Light-Accelerated Decomposition of Plastic Waste with the Fenton Reaction. Waste Management 2018, 75, 174–180. 10.1016/j.wasman.2018.01.034. PubMed DOI

Gurudayal; Chiam S. Y.; Kumar M. H.; Bassi P. S.; Seng H. L.; Barber J.; Wong L. H. Improving the Efficiency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese. ACS Appl. Mater. Interfaces 2014, 6 (8), 5852–5859. 10.1021/am500643y. PubMed DOI

Dubey M.; Wadhwa S.; Kumar R. Synthesis of Hematite/Alginate Beads Nanocomposite and Its Application in Organic Dye Removal. Materials Today: Proceedings 2020, 28, 70–73. 10.1016/j.matpr.2020.01.302. DOI

Lin Z.; Si T.; Wu Z.; Gao C.; Lin X.; He Q. Light-Activated Active Colloid Ribbons. Angew. Chem., Int. Ed. 2017, 56 (43), 13517–13520. 10.1002/anie.201708155. PubMed DOI

Lin Z.; Fan X.; Sun M.; Gao C.; He Q.; Xie H. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano 2018, 12 (3), 2539–2545. 10.1021/acsnano.7b08344. PubMed DOI

Urso M.; Ussia M.; Pumera M. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Adv. Funct. Mater. 2021, 31 (28), 2101510.10.1002/adfm.202101510. DOI

Giroto J. A.; Teixeira A. C. S. C.; Nascimento C. A. O.; Guardani R. Degradation of Poly(Ethylene Glycol) in Aqueous Solution by Photo-Fenton and H2O2/UV Processes. Ind. Eng. Chem. Res. 2010, 49 (7), 3200–3206. 10.1021/ie9015792. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination

. 2023 Feb 08 ; 15 (5) : 7023-7029. [epub] 20230126

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...