Supercapacitors in Motion: Autonomous Microswimmers for Natural-Resource Recovery
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000444
European Regional Development Fund
16-05167S
Czech Science Foundation
PubMed
31397027
DOI
10.1002/anie.201906642
Knihovny.cz E-zdroje
- Klíčová slova
- bismuth, environmental remediation, graphite, lithium purification, micromotors,
- Publikační typ
- časopisecké články MeSH
An electroadsorption technique similar to the ultrafast charging mechanism in supercapacitors is utilized to remove metals with different sizes and hydrophilicities from contaminated water using self-propelled microswimmers. The swimmers carry graphite fibre or bismuth with a layered crystal structure providing high electrostatic double-layer capacitances. Unlike previous methods, this electrochemical technique does not only utilize the surface of the swimmers, but due to the interlayer spacing of the graphite and bismuth, it is able to store metals in ≈400 layers, allowing removal and recovery of >50 ppm lithium in only 5 min. A larger interlayer distance between bismuth sheets allows the removal of bigger cations (sodium and calcium), expanding the application of this method to a large variety of natural elements. Finally, magnetic navigation of charged swimmers to an oxygen-saturated media causes oxidation and thus immediate release of the metal ions from the swimmers.
Zobrazit více v PubMed
R. W. Goodwin in Combustion Ash Residue Management 2nd ed. (Ed.: R. W. Goodwin), William Andrew Publishing, Oxford, 2014, pp. 43-61.
J. Ordoñez, E. J. Gago, A. Girard, Renewable Sustainable Energy Rev. 2016, 60, 195-205.
X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, Engineering 2018, 4, 361-370.
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, J. Am. Chem. Soc. 2018, 140, 9317-9331;
Y. Ying, M. Pumera, Chem. Eur. J. 2019, 25, 106-121;
V. V. Singh, A. Martin, K. Kaufmann, S. D. S. de Oliveira, J. Wang, Chem. Mater. 2015, 27, 8162-8169;
H. Wang, B. Khezri, M. Pumera, Chem 2016, 1, 473-481;
H. Wang, M. G. Potroz, J. A. Jackman, B. Khezri, T. Marić, N.-J. Cho, M. Pumera, Adv. Funct. Mater. 2017, 27, 1702338;
D. A. Uygun, B. Jurado-Sánchez, M. Uygun, J. Wang, Environ. Sci. Nano 2016, 3, 559-566;
T. Maric, C. C. Mayorga-Martinez, B. Khezri, M. Z. M. Nasir, X. Chia, M. Pumera, Adv. Funct. Mater. 2018, 28, 1802762.
M. Moreno-Guzman, A. Jodra, M.-Á. López, A. Escarpa, Anal. Chem. 2015, 87, 12380-12386.
K. K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, Small 2013, 9, 1916-1920.
F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu, J. Guan, Adv. Funct. Mater. 2015, 25, 6173-6181;
K. Villa, J. Parmar, D. Vilela, S. Sánchez, ACS Appl. Mater. Interfaces 2018, 10, 20478-20486;
D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Nano Lett. 2016, 16, 2860-2866.
S. M. Beladi-Mousavi, B. Khezri, L. Krejčová, Z. Heger, Z. Sofer, A. C. Fisher, M. Pumera, ACS Appl. Mater. Interfaces 2019, 11, 13359-13369;
B. Khezri, S. M. Beladi Mousavi, Z. Sofer, M. Pumera, Nanoscale 2019, 11, 8825-8834;
B. Khezri, S. M. Beladi Mousavi, L. Krejčová, Z. Heger, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1806696.
D. Qu, H. Shi, J. Power Sources 1998, 74, 99-107.
S. M. Beladi-Mousavi, M. Pumera, Chem. Soc. Rev. 2018, 47, 6964-6989;
S. M. Beladi-Mousavi, A. M. Pourrahimi, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1807004.
S. M. Beladi-Mousavi, S. Sadaf, A. M. Mahmood, L. Walder, ACS Nano 2017, 11, 8730-8740.
C. M. Bedoya Hincapie, M. J. Pinzon Cardenas, J. E. Alfonso Orjuela, E. Restrepo Parra, DYNA 2012, 79, 10.
M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, J. S. Lannin, Phys. Rev. Lett. 1991, 67, 875-878.
L. Li, J. Wang, T. Li, W. Song, G. Zhang, Soft Matter 2014, 10, 7511-7518.
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 2011, 4, 2826-2830;
R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai, G. Yuan, Adv. Funct. Mater. 2017, 27, 1701635.
M. D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach, J. Maier, J. Am. Chem. Soc. 2010, 132, 13220-13222.
Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
B. E. Conway, W. G. Pell, T. C. Liu, J. Power Sources 1997, 65, 53-59.
Smart micro- and nanorobots for water purification