Perspective on the status and behaviour of SARS-CoV-2 in soil

. 2022 Feb ; 29 (2) : 1014-1020. [epub] 20210930

Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34608369
Odkazy

PubMed 34608369
PubMed Central PMC8482646
DOI 10.1016/j.sjbs.2021.09.073
PII: S1319-562X(21)00875-5
Knihovny.cz E-zdroje

Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.

Zobrazit více v PubMed

Agnoletti M., Manganelli S., Piras F. Covid-19 and rural landscape: The case of Italy. Landsc. Urban Plan. 2020;204:103955. doi: 10.1016/j.landurbplan.2020.103955. PubMed DOI PMC

Anand U., Bianco F., Suresh S., Tripathi V., Núñez-Delgado A., Race M. SARS-CoV-2 and other viruses in soilSARS-CoV-2 and other viruses in soil: An environmental outlook. Environ. Outlook. Environ. Res. 2021;198:111297. doi: 10.1016/j.envres.2021.111297. PubMed DOI PMC

Anantharajah A., Helaers R., Defour J.-P., Olive N., Kabera F., Croonen L., Deldime F., Vaerman J.-L., Barbée C., Bodéus M., Scohy A., Verroken A., Rodriguez-Villalobos H., Kabamba-Mukadi B. How to choose the right real-time RT-PCR primer sets for the SARS-CoV-2 genome detection? J. Virol. Methods. 2021;295:114197. doi: 10.1016/j.jviromet.2021.114197. PubMed DOI PMC

Ashelford K.E., Day M.J., Fry J.C. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 2003;69(1):285–289. doi: 10.1128/AEM.69.1.285-289.2003. PubMed DOI PMC

Bouché M.B. Strategies lombriciennes. Ecol. Bull. 1977;25:122–132.

Conde-Cid M., Arias-Estevez M., Nunez-Delgado A. How to study SARS-CoV-2 in soil? Env. Res. 2021;198 PubMed PMC

Conde-Cid M., Arias-Estévez M., Núñez-Delgado A. SARS-CoV-2 and other pathogens could be determined in liquid samples from soils. Env. Pollut. 2021;273:116445. doi: 10.1016/j.envpol.2021.116445. PubMed DOI PMC

Duboise S.M., Moore B.E., Sagik B.P. Poliovirus survival and movement in a sandy forest soil. Appl. Environ. Microbiol. 1976;31(4):536–543. doi: 10.1128/aem.31.4.536-543.1976. PubMed DOI PMC

Edward, C.A., J.R., L., 1972. Earthworm as pests and benefactors. In: C.A., E., P.J, B. (Eds.), Biology of Earthworms. Springer, pp. 190–197.

Edwards C.E., Yount B.L., Graham R.L., Leist S.R., Hou Y.J., Dinnon K.H., Sims A.C., Swanstrom J., Gully K., Scobey T.D., Cooley M.R., Currie C.G., Randell S.H., Baric R.S. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc. Natl. Acad. Sci. USA. 2020;117(43):26915–26925. doi: 10.1073/pnas.2001046117. PubMed DOI PMC

Esau, K., 1977. The root: Primary state of growth, in: Esau, K. (Ed.), Anatomy of Seed Plants. New York Wiley, pp. 215–242.

Geller C., Varbanov M., Duval R.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–3068. doi: 10.3390/v4113044. PubMed DOI PMC

Gerba C.P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl lied Microbiol. 1984;30:133–168. PubMed

Gussow A.B., Auslander N., Faure G., Wolf Y.I., Zhang F., Koonin E.V. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. PNAS. 2020;117(26):15193–15199. PubMed PMC

Infante-Rodríguez D.A., Berber J.J., Mercado G., Valenzuela-González J., Muñoz D., Williams T. Earthworm mediated dispersal of baculovirus occlusion bodies: Experimental evidence from a model system. Biol. Control. 2016;100:18–24. doi: 10.1016/j.biocontrol.2016.05.005. DOI

Jeffery, S.L., Van Der Putten, W.H., 2011. Soil borne Human diseases.

Jonsson C.B., Figueiredo L.T.M., Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 2010;23(2):412–441. doi: 10.1128/CMR.00062-09. PubMed DOI PMC

Katz A.l., Peña S., Alimova A., Gottlieb P., Xu M., Block K.A. Heteroaggregation of an enveloped bacteriophage with colloidal sediments and effect on virus viability. Sci. Total Environ. 2018;637-638:104–111. PubMed PMC

Kiss B., Kis Z., Pályi B., Kellermayer M.S.Z. Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Lett. 2021;21(6):2675–2680. doi: 10.1021/acs.nanolett.0c0446510.1021/acs.nanolett.0c04465.s001. PubMed DOI PMC

Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-19619-7. PubMed DOI PMC

Kotwal G.J. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing com. Vaccine. 2008;26:3055:3058. PubMed

Kuzyakov Y., Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 2018;127:305–317. doi: 10.1016/j.soilbio.2018.09.032. DOI

La Rosa G., Iaconelli M., Mancini P., Bonanno Ferraro G., Veneri C., Bonadonna L., Lucentini L., Suffredini E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020;736:139652. doi: 10.1016/j.scitotenv.2020.139652. PubMed DOI PMC

Lance J.C., Gerba C.P. Virus movement in soil during saturated and unsaturated flow. Appl. Environ. Microbiol. 1984;47(2):335–337. PubMed PMC

Luisetto M., Nili B., Khaled E., Mashori G., Rafa A.Y., Latishev O.Y. Bioaerosols and Corona Virus Diffusion, Transmission, Carriers, Viral Size, Surfaces Properties and other Factor Involved. Int. J. Med. Healthc. Reports. 2021;01:1004. doi: 10.51521/ijmhr.2021.1108. DOI

Malik Y.A. Properties of Coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020;42:3–11. PubMed

Mokili J.L., Rohwer F., Dutilh B.E. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2012;2:63–77. PubMed PMC

Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S., 2012. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils 48, 743–762.

Nasser A.M., Glozman R., Nitzan Y. Contribution of microbial activity to virus reduction in saturated soil. Water Res. 2002;36:2589–2595. PubMed

Peccia, J., Zulli, A., Brackney, D.E., Grubaugh, N.D., Kaplan, E.H., Casanovas-Massana, A., Ko, A.I., Malik, A.A., Wang, D., Wang, M., Warren, J.L., Weinberger, D.M., Omer, S.B., 2020. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv 1. https://doi.org/10.1101/2020.05.19.20105999

Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M.T., Guerri, G., Nannipieri, P., 2009. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235. https://doi.org/10.1007/s00374-008-0345-8

Pratama, A.A., van Elsas, J.D., 2019. The Viruses in Soil—Potential Roles, Activities, and Impacts, in: van Elsas, J.D., Trevors, J.T., Soares Rosado, A., Nannipieri, P. (Eds.), Modern Soil Microbiology. CRC Press, p. 14.

Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A., Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181:115942. doi: 10.1016/j.watres.2020.115942. PubMed DOI PMC

Reyes A., Christian P., Valle J., Williams* T. Persistence of invertebrate iridescent virus 6 in soil. Biocontrol. 2004;49(4):433–440.

Schijven J.F., Hassanizadeh S.M. Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit. Rev. Environ. Sci. Technol. 2002;30(1):49–127.

Schoeman D., Fielding B.C., Arias-Reyes C., Zubieta-DeUrioste N., Poma-Machicao L., Aliaga-Raudan F., Carvajal-Rodriguez F., Dutschmann M., Schneider-Gasser E.M., Zubieta-Calleja G., Soliz J., Schneider-Gasser E.M., Zubieta-Calleja Director High G., Loeffelholz M.J., Tang Y.W., Velavan T.P., Meyer C.G., Taylor D., Lindsay A.C., Halcox J.P., Setti L., Passarini F., De Gennaro G., Barbieri P., Perrone M.G., Borelli M., Palmisani J., Di Gilio A., Piscitelli P., Miani A., Cao W., Li T., Ramanathan K., Antognini D., Combes A., Paden M., Zakhary B., Ogino M., Maclaren G., Brodie D., Liu M., Wang T., Zhou Y., Zhao Y., Zhang Y., Li J., Wan Y., Shang J., Graham R., Baric R.S., Li F., Sheraton K. Journal Pre-proof Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude? Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude? Corresponding authors. Cell Res. 2020;9:278–280. doi: 10.3390/ijerph17082932. DOI

Sims N., Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139:105689. doi: 10.1016/j.envint.2020.105689. PubMed DOI PMC

Stotzky G. In: Interactions of Soil Minerals with Natural Organics and Microbes. Huang P.M., Schnitzer M., editors. Soil Science Society of America; Madison, WI: 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses; pp. 305–428.

Sun X.-D., Yuan X.-Z., Jia Y., Feng L.-J., Zhu F.-P., Dong S.-S., Liu J., Kong X., Tian H., Duan J.-L., Ding Z., Wang S.-G., Xing B. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020;15(9):755–760. doi: 10.1038/s41565-020-0707-4. PubMed DOI

Surjit M., Lal S.K. The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infect. Genet. Evol. 2008;8(4):397–405. doi: 10.1016/j.meegid.2007.07.004. PubMed DOI PMC

Swanson, M.., Fraser, G., Daniel, T.J., Torrance, P.J., Gregory, P.J., Taliansky, M., 2009. Viruses in soils: Morphological diversity and abundance in the rhizosphere. Ann. Appl. Biol. 155, 51–60.

Thompson S.S., Flury M., Yates M.V., Jury W.A. Role of the air-water-solid interrace in bacteriophage sorption experiments. Appl. Environ. Microbiol. 1998;64:304–309. doi: 10.1128/aem.64.1.304-309.1998. PubMed DOI PMC

Tran H.N., Le G.T., Nguyen D.T., Juang R.-S., Rinklebe Jörg, Bhatnagar A., Lima E.C., Iqbal H.M.N., Sarmah A.K., Chao H.-P. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environ. Res. 2021;193:110265. doi: 10.1016/j.envres.2020.110265. PubMed DOI PMC

Tripet B., Howard M.W., Jobling M., Holmes R.K., Holmes K.V., Hodges R.S. Structural characterization of the SARS-coronavirus spike S fusion protein core. J. Biol. Chem. 2004;279(20):20836–20849. PubMed PMC

Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC

Wang Y., Wu X., Wang Y., Li B., Zhou H., Yuan G., Fu Y., Luo Y. Low stability of nucleocapsid protein in SARS virus. Biochemistry. 2004;43(34):11103–11108. doi: 10.1021/bi049194b. PubMed DOI

WHO, 2021. WHO - Genomic sequencing of SARS-CoV-2: A guide to implementation for maximum impact on public health. 8 January 2021 ISBN 978-92-4-001844-0.

Williamson K.E., Corzo K.A., Drissi C.L., Buckingham J.M., Thompson C.P., Helton R.R. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils. 2013;49(7):857–869. doi: 10.1007/s00374-013-0780-z. DOI

Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. Annu. Reviiew Virol. 2017;4(1):201–219. PubMed

Williamson K.E., Kan J., Polson S.W., Williamson S.J. Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biol. Biochem. 2011;43(4):736–748. doi: 10.1016/j.soilbio.2010.04.017. DOI

Williamson K.E., Radosevich M., Wommack K.E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 2005;71(6):3119–3125. doi: 10.1128/AEM.71.6.3119-3125.2005. PubMed DOI PMC

Williamson K.E., Wommack K.E., Radosevich M. Sampling Natural Viral Communities from Soil for Culture-Independent Analyses. Appl. Environ. Microbiol. 2003;69(11):6628–6633. doi: 10.1128/AEM.69.11.6628-6633.2003. PubMed DOI PMC

Zhernov Y.V., Konstantinov A.I., Zherebker A., Nikolaev E., Orlov A., Savinykh M.I., Kornilaeva G.V., Karamov E.V., Perminova I.V. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environ. Res. 2021;193:110312. doi: 10.1016/j.envres.2020.110312. PubMed DOI PMC

Zhernov Y.V., Kremb S., Helfer M., Schindler M., Harir M., Mueller C., Hertkorn N., Avvakumova N.P., Konstantinov A.I., Brack-Werner R., Schmitt-Kopplin P., Perminova I.V. Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities. New J. Chem. 2017;41(1):212–224.

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.-S., Zhao K., Chen Q.-J., Deng F., Liu L.-L., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...