Perspective on the status and behaviour of SARS-CoV-2 in soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34608369
PubMed Central
PMC8482646
DOI
10.1016/j.sjbs.2021.09.073
PII: S1319-562X(21)00875-5
Knihovny.cz E-zdroje
- Klíčová slova
- Desorption, SARS-CoV-2, Soil, Virus adsorption,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.
Zobrazit více v PubMed
Agnoletti M., Manganelli S., Piras F. Covid-19 and rural landscape: The case of Italy. Landsc. Urban Plan. 2020;204:103955. doi: 10.1016/j.landurbplan.2020.103955. PubMed DOI PMC
Anand U., Bianco F., Suresh S., Tripathi V., Núñez-Delgado A., Race M. SARS-CoV-2 and other viruses in soilSARS-CoV-2 and other viruses in soil: An environmental outlook. Environ. Outlook. Environ. Res. 2021;198:111297. doi: 10.1016/j.envres.2021.111297. PubMed DOI PMC
Anantharajah A., Helaers R., Defour J.-P., Olive N., Kabera F., Croonen L., Deldime F., Vaerman J.-L., Barbée C., Bodéus M., Scohy A., Verroken A., Rodriguez-Villalobos H., Kabamba-Mukadi B. How to choose the right real-time RT-PCR primer sets for the SARS-CoV-2 genome detection? J. Virol. Methods. 2021;295:114197. doi: 10.1016/j.jviromet.2021.114197. PubMed DOI PMC
Ashelford K.E., Day M.J., Fry J.C. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 2003;69(1):285–289. doi: 10.1128/AEM.69.1.285-289.2003. PubMed DOI PMC
Bouché M.B. Strategies lombriciennes. Ecol. Bull. 1977;25:122–132.
Conde-Cid M., Arias-Estevez M., Nunez-Delgado A. How to study SARS-CoV-2 in soil? Env. Res. 2021;198 PubMed PMC
Conde-Cid M., Arias-Estévez M., Núñez-Delgado A. SARS-CoV-2 and other pathogens could be determined in liquid samples from soils. Env. Pollut. 2021;273:116445. doi: 10.1016/j.envpol.2021.116445. PubMed DOI PMC
Duboise S.M., Moore B.E., Sagik B.P. Poliovirus survival and movement in a sandy forest soil. Appl. Environ. Microbiol. 1976;31(4):536–543. doi: 10.1128/aem.31.4.536-543.1976. PubMed DOI PMC
Edward, C.A., J.R., L., 1972. Earthworm as pests and benefactors. In: C.A., E., P.J, B. (Eds.), Biology of Earthworms. Springer, pp. 190–197.
Edwards C.E., Yount B.L., Graham R.L., Leist S.R., Hou Y.J., Dinnon K.H., Sims A.C., Swanstrom J., Gully K., Scobey T.D., Cooley M.R., Currie C.G., Randell S.H., Baric R.S. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc. Natl. Acad. Sci. USA. 2020;117(43):26915–26925. doi: 10.1073/pnas.2001046117. PubMed DOI PMC
Esau, K., 1977. The root: Primary state of growth, in: Esau, K. (Ed.), Anatomy of Seed Plants. New York Wiley, pp. 215–242.
Geller C., Varbanov M., Duval R.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–3068. doi: 10.3390/v4113044. PubMed DOI PMC
Gerba C.P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl lied Microbiol. 1984;30:133–168. PubMed
Gussow A.B., Auslander N., Faure G., Wolf Y.I., Zhang F., Koonin E.V. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. PNAS. 2020;117(26):15193–15199. PubMed PMC
Infante-Rodríguez D.A., Berber J.J., Mercado G., Valenzuela-González J., Muñoz D., Williams T. Earthworm mediated dispersal of baculovirus occlusion bodies: Experimental evidence from a model system. Biol. Control. 2016;100:18–24. doi: 10.1016/j.biocontrol.2016.05.005. DOI
Jeffery, S.L., Van Der Putten, W.H., 2011. Soil borne Human diseases.
Jonsson C.B., Figueiredo L.T.M., Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 2010;23(2):412–441. doi: 10.1128/CMR.00062-09. PubMed DOI PMC
Katz A.l., Peña S., Alimova A., Gottlieb P., Xu M., Block K.A. Heteroaggregation of an enveloped bacteriophage with colloidal sediments and effect on virus viability. Sci. Total Environ. 2018;637-638:104–111. PubMed PMC
Kiss B., Kis Z., Pályi B., Kellermayer M.S.Z. Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Lett. 2021;21(6):2675–2680. doi: 10.1021/acs.nanolett.0c0446510.1021/acs.nanolett.0c04465.s001. PubMed DOI PMC
Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-19619-7. PubMed DOI PMC
Kotwal G.J. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing com. Vaccine. 2008;26:3055:3058. PubMed
Kuzyakov Y., Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 2018;127:305–317. doi: 10.1016/j.soilbio.2018.09.032. DOI
La Rosa G., Iaconelli M., Mancini P., Bonanno Ferraro G., Veneri C., Bonadonna L., Lucentini L., Suffredini E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020;736:139652. doi: 10.1016/j.scitotenv.2020.139652. PubMed DOI PMC
Lance J.C., Gerba C.P. Virus movement in soil during saturated and unsaturated flow. Appl. Environ. Microbiol. 1984;47(2):335–337. PubMed PMC
Luisetto M., Nili B., Khaled E., Mashori G., Rafa A.Y., Latishev O.Y. Bioaerosols and Corona Virus Diffusion, Transmission, Carriers, Viral Size, Surfaces Properties and other Factor Involved. Int. J. Med. Healthc. Reports. 2021;01:1004. doi: 10.51521/ijmhr.2021.1108. DOI
Malik Y.A. Properties of Coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020;42:3–11. PubMed
Mokili J.L., Rohwer F., Dutilh B.E. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2012;2:63–77. PubMed PMC
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S., 2012. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils 48, 743–762.
Nasser A.M., Glozman R., Nitzan Y. Contribution of microbial activity to virus reduction in saturated soil. Water Res. 2002;36:2589–2595. PubMed
Peccia, J., Zulli, A., Brackney, D.E., Grubaugh, N.D., Kaplan, E.H., Casanovas-Massana, A., Ko, A.I., Malik, A.A., Wang, D., Wang, M., Warren, J.L., Weinberger, D.M., Omer, S.B., 2020. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv 1. https://doi.org/10.1101/2020.05.19.20105999
Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M.T., Guerri, G., Nannipieri, P., 2009. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235. https://doi.org/10.1007/s00374-008-0345-8
Pratama, A.A., van Elsas, J.D., 2019. The Viruses in Soil—Potential Roles, Activities, and Impacts, in: van Elsas, J.D., Trevors, J.T., Soares Rosado, A., Nannipieri, P. (Eds.), Modern Soil Microbiology. CRC Press, p. 14.
Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A., Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181:115942. doi: 10.1016/j.watres.2020.115942. PubMed DOI PMC
Reyes A., Christian P., Valle J., Williams* T. Persistence of invertebrate iridescent virus 6 in soil. Biocontrol. 2004;49(4):433–440.
Schijven J.F., Hassanizadeh S.M. Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit. Rev. Environ. Sci. Technol. 2002;30(1):49–127.
Schoeman D., Fielding B.C., Arias-Reyes C., Zubieta-DeUrioste N., Poma-Machicao L., Aliaga-Raudan F., Carvajal-Rodriguez F., Dutschmann M., Schneider-Gasser E.M., Zubieta-Calleja G., Soliz J., Schneider-Gasser E.M., Zubieta-Calleja Director High G., Loeffelholz M.J., Tang Y.W., Velavan T.P., Meyer C.G., Taylor D., Lindsay A.C., Halcox J.P., Setti L., Passarini F., De Gennaro G., Barbieri P., Perrone M.G., Borelli M., Palmisani J., Di Gilio A., Piscitelli P., Miani A., Cao W., Li T., Ramanathan K., Antognini D., Combes A., Paden M., Zakhary B., Ogino M., Maclaren G., Brodie D., Liu M., Wang T., Zhou Y., Zhao Y., Zhang Y., Li J., Wan Y., Shang J., Graham R., Baric R.S., Li F., Sheraton K. Journal Pre-proof Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude? Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude? Corresponding authors. Cell Res. 2020;9:278–280. doi: 10.3390/ijerph17082932. DOI
Sims N., Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139:105689. doi: 10.1016/j.envint.2020.105689. PubMed DOI PMC
Stotzky G. In: Interactions of Soil Minerals with Natural Organics and Microbes. Huang P.M., Schnitzer M., editors. Soil Science Society of America; Madison, WI: 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses; pp. 305–428.
Sun X.-D., Yuan X.-Z., Jia Y., Feng L.-J., Zhu F.-P., Dong S.-S., Liu J., Kong X., Tian H., Duan J.-L., Ding Z., Wang S.-G., Xing B. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020;15(9):755–760. doi: 10.1038/s41565-020-0707-4. PubMed DOI
Surjit M., Lal S.K. The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infect. Genet. Evol. 2008;8(4):397–405. doi: 10.1016/j.meegid.2007.07.004. PubMed DOI PMC
Swanson, M.., Fraser, G., Daniel, T.J., Torrance, P.J., Gregory, P.J., Taliansky, M., 2009. Viruses in soils: Morphological diversity and abundance in the rhizosphere. Ann. Appl. Biol. 155, 51–60.
Thompson S.S., Flury M., Yates M.V., Jury W.A. Role of the air-water-solid interrace in bacteriophage sorption experiments. Appl. Environ. Microbiol. 1998;64:304–309. doi: 10.1128/aem.64.1.304-309.1998. PubMed DOI PMC
Tran H.N., Le G.T., Nguyen D.T., Juang R.-S., Rinklebe Jörg, Bhatnagar A., Lima E.C., Iqbal H.M.N., Sarmah A.K., Chao H.-P. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environ. Res. 2021;193:110265. doi: 10.1016/j.envres.2020.110265. PubMed DOI PMC
Tripet B., Howard M.W., Jobling M., Holmes R.K., Holmes K.V., Hodges R.S. Structural characterization of the SARS-coronavirus spike S fusion protein core. J. Biol. Chem. 2004;279(20):20836–20849. PubMed PMC
Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC
Wang Y., Wu X., Wang Y., Li B., Zhou H., Yuan G., Fu Y., Luo Y. Low stability of nucleocapsid protein in SARS virus. Biochemistry. 2004;43(34):11103–11108. doi: 10.1021/bi049194b. PubMed DOI
WHO, 2021. WHO - Genomic sequencing of SARS-CoV-2: A guide to implementation for maximum impact on public health. 8 January 2021 ISBN 978-92-4-001844-0.
Williamson K.E., Corzo K.A., Drissi C.L., Buckingham J.M., Thompson C.P., Helton R.R. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils. 2013;49(7):857–869. doi: 10.1007/s00374-013-0780-z. DOI
Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. Annu. Reviiew Virol. 2017;4(1):201–219. PubMed
Williamson K.E., Kan J., Polson S.W., Williamson S.J. Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biol. Biochem. 2011;43(4):736–748. doi: 10.1016/j.soilbio.2010.04.017. DOI
Williamson K.E., Radosevich M., Wommack K.E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 2005;71(6):3119–3125. doi: 10.1128/AEM.71.6.3119-3125.2005. PubMed DOI PMC
Williamson K.E., Wommack K.E., Radosevich M. Sampling Natural Viral Communities from Soil for Culture-Independent Analyses. Appl. Environ. Microbiol. 2003;69(11):6628–6633. doi: 10.1128/AEM.69.11.6628-6633.2003. PubMed DOI PMC
Zhernov Y.V., Konstantinov A.I., Zherebker A., Nikolaev E., Orlov A., Savinykh M.I., Kornilaeva G.V., Karamov E.V., Perminova I.V. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environ. Res. 2021;193:110312. doi: 10.1016/j.envres.2020.110312. PubMed DOI PMC
Zhernov Y.V., Kremb S., Helfer M., Schindler M., Harir M., Mueller C., Hertkorn N., Avvakumova N.P., Konstantinov A.I., Brack-Werner R., Schmitt-Kopplin P., Perminova I.V. Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities. New J. Chem. 2017;41(1):212–224.
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.-S., Zhao K., Chen Q.-J., Deng F., Liu L.-L., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC