In silico re-assessment of a diagnostic RT-qPCR assay for universal detection of Influenza A viruses
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30733500
PubMed Central
PMC6367508
DOI
10.1038/s41598-018-37869-w
PII: 10.1038/s41598-018-37869-w
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- DNA primery MeSH
- mutace MeSH
- počítačová simulace MeSH
- polymerázová řetězová reakce s reverzní transkripcí metody MeSH
- sekvenční seřazení metody MeSH
- virus chřipky A genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
The ongoing evolution of microbial pathogens represents a significant issue in diagnostic PCR/qPCR. Many assays are burdened with false negativity due to mispriming and/or probe-binding failures. Therefore, PCR/qPCR assays used in the laboratory should be periodically re-assessed in silico on public sequences to evaluate the ability to detect actually circulating strains and to infer potentially escaping variants. In the work presented we re-assessed a RT-qPCR assay for the universal detection of influenza A (IA) viruses currently recommended by the European Union Reference Laboratory for Avian Influenza. To this end, the primers and probe sequences were challenged against more than 99,000 M-segment sequences in five data pools. To streamline this process, we developed a simple algorithm called the SequenceTracer designed for alignment stratification, compression, and personal sequence subset selection and also demonstrated its utility. The re-assessment confirmed the high inclusivity of the assay for the detection of avian, swine and human pandemic H1N1 IA viruses. On the other hand, the analysis identified human H3N2 strains with a critical probe-interfering mutation circulating since 2010, albeit with a significantly fluctuating proportion. Minor variations located in the forward and reverse primers identified in the avian and swine data were also considered.
Zobrazit více v PubMed
Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA. 1991;88:7276–7280. doi: 10.1073/pnas.88.16.7276. PubMed DOI PMC
Lemmon GH, Gardner SN. Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 2008;7:18. doi: 10.1186/1476-0711-7-18. PubMed DOI PMC
Stevenson J, Hymas W, Hillyard D. Effect of Sequence Polymorphisms on Performance of Two Real-Time PCR Assays for Detection of Herpes Simplex Virus. J. Clin. Microbiol. 2005;43:2391–2398. doi: 10.1128/JCM.43.5.2391-2398.2005. PubMed DOI PMC
Kim LM, Afonso CL, Suarez DL. Effect of probe-site mismatches on detection of virulent Newcastle disease viruses using a fusion-gene real-time reverse transcription polymerase chain reaction test. J. Vet. Diagn. Invest. 2006;18:519–28. doi: 10.1177/104063870601800601. PubMed DOI
Lengerova M, et al. Real-time PCR diagnostics failure caused by nucleotide variability within exon 4 of the human cytomegalovirus major immediate-early gene. J. Clin. Microbiol. 2007;45:1042–4. doi: 10.1128/JCM.01109-06. PubMed DOI PMC
Cattoli G, et al. False-negative results of a validated real-time PCR protocol for diagnosis of Newcastle disease due to genetic variability of the matrix gene. J. Clin. Microbiol. 2009;47:3791–3792. doi: 10.1128/JCM.00895-09. PubMed DOI PMC
Klungthong C, et al. The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J. Clin. Virol. 2010;48:91–95. doi: 10.1016/j.jcv.2010.03.012. PubMed DOI
Lee HK, et al. Missed diagnosis of influenza B virus due to nucleoprotein sequence mutations, Singapore, April 2011. Euro Surveill. 2011;16:19943. PubMed
Armstrong PM, Prince N, Andreadis TG. Development of a multi-target TaqMan assay to detect eastern equine encephalitis virus variants in mosquitoes. Vector Borne Zoonotic Dis. 2012;12:872–876. doi: 10.1089/vbz.2012.1008. PubMed DOI PMC
Brault AC, Fang Y, Dannen M, Anishchenko M, Reisen WK. A naturally occurring mutation within the probe-binding region compromises a molecular-based West Nile virus surveillance assay for mosquito pools (Diptera: Culicidae) J. Med. Entomol. 2012;49:939–41. doi: 10.1603/ME11287. PubMed DOI PMC
Garson JA, et al. Minor groove binder modification of widely used TaqMan probe for hepatitis E virus reduces risk of false negative real-time PCR results. J. Virol. Methods. 2012;186:157–160. doi: 10.1016/j.jviromet.2012.07.027. PubMed DOI
Steensels, D., Vankeerberghen, A. & De Beenhouwer, H. Towards multitarget testing in molecular microbiology. Int. J. Microbiol. ID121057 (2013). PubMed PMC
Nagy A, et al. Development and evaluation of a one-step real-time RT-PCR assay for universal detection of influenza A viruses from avian and mammal species. Arch. Virol. 2010;155:665–73. doi: 10.1007/s00705-010-0636-x. PubMed DOI PMC
Nagy, A., Jiřinec, T., Černíková, L., Jiřincová, H. & Havlíčková, M. Large-scale nucleotide sequence alignment and sequence variability assessment to identify the evolutionarily highly conserved regions for universal screening PCR assay design: An example of influenza A virus. Methods Mol. Biol. 1275, 57–72 Available at: http://entropy.szu.cz:8080/EntropyCalcWeb/. (Accessed April 2017) (2015). PubMed
Tong S, et al. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA. 2012;109:4269–74. doi: 10.1073/pnas.1116200109. PubMed DOI PMC
Tong S, et al. New world bats harbour diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. doi: 10.1371/journal.ppat.1003657. PubMed DOI PMC
Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J. Virol. 1991;65:5491–8. PubMed PMC
Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG. Matrix gene of influenza A viruses isolated from wild aquatic birds: Ecology and emergence of influenza A viruses. J. Virol. 2004;78:8771–9. doi: 10.1128/JVI.78.16.8771-8779.2004. PubMed DOI PMC
Nagy A, et al. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay. PLoS One. 2016;11:e0151204. doi: 10.1371/journal.pone.0151204. PubMed DOI PMC
World Organization for Animal Health (OIE), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2016. Available at: http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-online/ (Accessed April 2017).
Kuznetsov IB, Hwang S. A novel sensitive method for the detection of user-defined compositional bias in biological sequences. Bioinformatics. 2006;22:1055–63. doi: 10.1093/bioinformatics/btl049. PubMed DOI
Bush RM, Smith CB, Cox NJ, Fitch WM. Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza Aevolution. Proc. Natl. Acad. Sci. USA. 2000;97:6974–80. doi: 10.1073/pnas.97.13.6974. PubMed DOI PMC
Suarez DL, Chester N, Hatfield J. Sequencing artifacts in the type A influenza databases and attempts to correct them. Influenza Other Respir.Viruses. 2014;8:499–505. doi: 10.1111/irv.12239. PubMed DOI PMC
Krasnitz M, Levine AJ, Rabadan R. Anomalies in the influenza virus genome database: New biology or laboratory errors? J. Virol. 2008;82:8947–50. doi: 10.1128/JVI.00101-08. PubMed DOI PMC
Global Initiative on Sharing All Influenza Data, EpiFlu database. Available at: http://platform.gisaid.org/epi3/frontend#165ba2 (Accessed April 2017).
Bao, Y. et al. The influenza virus resource at the National Centre for Biotechnology Information. J. Virol. 82, 596–601 Available at: http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database. (Accessed April 2017) (2008). PubMed PMC
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–8. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Hall, T. A. BE: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98 (1999).