A universal RT-qPCR assay for "One Health" detection of influenza A viruses

. 2021 ; 16 (1) : e0244669. [epub] 20210120

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33471840

The mutual dependence of human and animal health is central to the One Health initiative as an integrated strategy for infectious disease control and management. A crucial element of the One Health includes preparation and response to influenza A virus (IAV) threats at the human-animal interface. The IAVs are characterized by extensive genetic variability, they circulate among different hosts and can establish host-specific lineages. The four main hosts are: avian, swine, human and equine, with occasional transmission to other mammalian species. The host diversity is mirrored in the range of the RT-qPCR assays for IAV detection. Different assays are recommended by the responsible health authorities for generic IAV detection in birds, swine or humans. In order to unify IAV monitoring in different hosts and apply the One Health approach, we developed a single RT-qPCR assay for universal detection of all IAVs of all subtypes, species origin and global distribution. The assay design was centred on a highly conserved region of the IAV matrix protein (MP)-segment identified by a comprehensive analysis of 99,353 sequences. The reaction parameters were effectively optimised with efficiency of 93-97% and LOD95% of approximately ten IAV templates per reaction. The assay showed high repeatability, reproducibility and robustness. The extensive in silico evaluation demonstrated high inclusivity, i.e. perfect sequence match in the primers and probe binding regions, established as 94.6% for swine, 98.2% for avian and 100% for human H3N2, pandemic H1N1, as well as other IAV strains, resulting in an overall predicted detection rate of 99% on the analysed dataset. The theoretical predictions were confirmed and extensively validated by collaboration between six veterinary or human diagnostic laboratories on a total of 1970 specimens, of which 1455 were clinical and included a diverse panel of IAV strains.

Zobrazit více v PubMed

Gibbs EP. The evolution of One Health: a decade of progress and challenges for the future. Vet Rec. 2014;174: 85–91. 10.1136/vr.g143 PubMed DOI

Powdrill TF, Nipp TL, Rinderknecht JL. One health approach to influenza: assessment of critical issues and options. Emerg Infect Dis. 2010;16: e1. PubMed

Webster RG, Laver WG, Air GM, Schild GC. Molecular mechanisms of variation in influenza viruses. Nature. 1982;296: 115–21. 10.1038/296115a0 PubMed DOI

Lowen AC. Constraints, drivers, and implications of influenza a virus reassortment. Annu Rev Virol. 2017; 4: 105–121. 10.1146/annurev-virology-101416-041726 PubMed DOI

Bailey ES, Choi JY, Fieldhouse JK, Borkenhagen LK, Zemke J, Zhang D, et al. The continual threat of influenza virus infections at the human-animal interface: What is new from a one health perspective? Evol Med Public Health. 2018;2018: 192–198. 10.1093/emph/eoy013 PubMed DOI PMC

Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers. 2018;4: 3 10.1038/s41572-018-0002-y PubMed DOI PMC

Alexander DJ, Brown IH. History of highly pathogenic avian influenza. Rev Sci Tech. 2009;28: 19–38. 10.20506/rst.28.1.1856 PubMed DOI

Capua I, Alexander DJ. Avian influenza infections in birds-a moving target. Influenza Other Respir Viruses. 2007;1: 11–18. 10.1111/j.1750-2659.2006.00004.x PubMed DOI PMC

Lycett SJ, Duchatel F, Digard P. A brief history of bird flu. Philos Trans R Soc Lond B Biol Sci. 2019;374: 20180257 10.1098/rstb.2018.0257 PubMed DOI PMC

Brown IH. History and epidemiology of Swine influenza in Europe. Curr Top Microbiol Immunol. 2013; 370: 133–146. 10.1007/82_2011_194 PubMed DOI

Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, et al. Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health. 2014; 61: 4–17. 10.1111/zph.12049 PubMed DOI

Bourret V. Avian influenza viruses in pigs: An overview. Vet J. 2018; 239: 7–14. 10.1016/j.tvjl.2018.07.005 PubMed DOI

Harris KA, Freidl GS, Munoz OS, von Dobschuetz S, De Nardi M, Wieland B, et al. Epidemiological Risk Factors for Animal Influenza A Viruses Overcoming Species Barriers. Ecohealth. 2017;14: 342–360. 10.1007/s10393-017-1244-y PubMed DOI

Dwyer DE, Kirkland PD. Influenza: One Health in action. N S W Public Health Bull. 2011;22: 123–6. 10.1071/NB11005 PubMed DOI

Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459: 1122–5. 10.1038/nature08182 PubMed DOI

Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40: 3256–3260. 10.1128/jcm.40.9.3256-3260.2002 PubMed DOI PMC

Slomka MJ, Coward VJ, Banks J, Londt BZ, Brown IH, Voermans J, et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis. 2007;51: 227–234. 10.1637/7674-063006R1.1 PubMed DOI

EU, E.U. Commission Decision of 4 August 2006 approving a Diagnostic Manual for avian influenza as provided for in Council Directive 2005/94/EC.

Hoffmann B, Beer M, Reid SM, Mertens P, Oura CA, van Rijn PA, et al. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol. 2009;139: 1–23. 10.1016/j.vetmic.2009.04.034 PubMed DOI

OIE, World Oganization of Animal Health, Avian Influenza (infection with avian influenza viruses), Chapter 3.3.4 "Manual of Diagnostic tests and Vaccinesdfor Terrestrial Animals".2015.

Seekings AH, Slomka MJ, Russell C, Howard WA, Choudhury B, Nunez A, et al. Direct evidence of H7N7 avian influenza virus mutation from low to high virulence on a single poultry premises during an outbreak in free range chickens in the UK, 2008. Infect Genet Evol. 2018;64: 13–31. 10.1016/j.meegid.2018.06.005 PubMed DOI

Slomka MJ, Irvine RM, Pavlidis T, Banks J, Brown IH. Role of real-time RT-PCR platform technology in the diagnosis and management of notifiable avian influenza outbreaks: experiences in Great Britain. Avian Dis. 2010;54: 591–596. 10.1637/8947-052909-Reg.1 PubMed DOI

Slomka MJ, To TL, Tong HH, Coward VJ, Hanna A, Shell W, et al. Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam. Avian Pathol. 2012;41: 177–193. 10.1080/03079457.2012.656578 PubMed DOI

Nagy A, Vostinakova V, Pirchanova Z, Cernikova L, Dirbakova Z, Mojzis M, et al. Development and evaluation of a one-step real-time RT-PCR assay for universal detection of influenza A viruses from avian and mammal species. Arch Virol. 2010;155: 665–73. 10.1007/s00705-010-0636-x PubMed DOI PMC

Nagy A, Černíková L, Jiřincová H, Havlíčková M, Horníčková J. Local-scale diversity and between-year "frozen evolution" of avian influenza A viruses in nature. PLoS One. 2014;9: e103053 10.1371/journal.pone.0103053 PubMed DOI PMC

Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, et al. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philos Trans R Soc Lond B Biol Sci. 2019;374: 20180259 10.1098/rstb.2018.0259 PubMed DOI PMC

Reid SM, Brookes SM, Nunez A, Banks J, Parker CD, Ceeraz V, et al. Detection of non-notifiable H4N6 avian influenza virus in poultry in Great Britain. Vet Microbiol. 2018;224: 107–115. 10.1016/j.vetmic.2018.08.026 PubMed DOI

Reid SM, Nunez A, Seekings AH, Thomas SS, Slomka MJ, Mahmood S, et al. Two Single Incursions of H7N7 and H5N1 Low Pathogenicity Avian Influenza in U.K. Broiler Breeders During 2015 and 2016. Avian Dis. 2019; 63: 181–192. 10.1637/11898-051418-Reg.1 PubMed DOI

Slomka MJ, Seekings AH, Mahmood S, Thomas S, Puranik A, Watson S, et al. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys. Sci Rep. 2018;8: 7322 10.1038/s41598-018-25062-y PubMed DOI PMC

Puranik A, Slomka MJ, Warren CJ, Thomas SS, Mahmood S, Byrne AMP, et al. Transmission dynamics between infected waterfowl and terrestrial poultry: Differences between the transmission and tropism of H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4a) among ducks, chickens and turkeys. Virology. 2020;541: 113–123. 10.1016/j.virol.2019.10.014 PubMed DOI

Ryt-Hansen P, Larsen I, Kristensen CS, Krog JS, Wacheck S, Larsen LE. Longitudinal field studies reveal early infection and persistence of influenza A virus in piglets despite the presence of maternally derived antibodies. Vet Res. 2019;50: 36 10.1186/s13567-019-0655-x PubMed DOI PMC

Ryt-Hansen P, Pedersen AG, Larsen I, Krog JS, Kristensen CS, Larsen LE. Acute Influenza A virus outbreak in an enzootic infected sow herd: Impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination. PLoS One. 2019;14: e0224854 10.1371/journal.pone.0224854 PubMed DOI PMC

Ryt-Hansen P, Larsen I, Kristensen CS, Krog JS, Larsen LE. Limited impact of influenza A virus vaccination of piglets in an enzootic infected sow herd. Res Vet Sci. 2019;127: 47–56. 10.1016/j.rvsc.2019.10.015 PubMed DOI

Ryt-Hansen P, Pedersen AG, Larsen I, Kristensen CS, Krog JS, Wacheck S, et al. Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses. Viruses. 2020;12: pii E248 10.3390/v12020248 PubMed DOI PMC

OIE, World Organisation for Animal Health. Principles and methods of validation of diagnostic assays for infectious diseases, chapter 1.1.1. 2018.

Slomka MJ, Densham AL, Coward VJ, Essen S, Brookes SM, Irvine RM, et al. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza Other Respir Viruses. 2010;4: 277–293. 10.1111/j.1750-2659.2010.00149.x PubMed DOI PMC

WHO, World Health Organisation information for the molecular detection of influenza viruses. November 2018. https://www.who.int/influenza/gisrs_laboratory/molecular_diagnosis/en/

OIE, World Organisation for Animal Health. Terrestrial Manual 2018b. Avian influenza. Chapter 3.3.4.

OIE, World Organisation for Animal Health. Terrestrial Manual 2018c. Influenza A virus of swine. Chapter 3.8.7.

OIE, World Organisation for Animal Health. Terrestrial Manual 2018d. Equine influenza. Chapter 3.5.7.

Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol. 1991;65: 5491–8. 10.1128/JVI.65.10.5491-5498.1991 PubMed DOI PMC

Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG. Matrix gene of influenza A viruses isolated from wild aquatic birds: ecology and emergence of influenza A viruses. J Virol. 2004;78: 8771–9. 10.1128/JVI.78.16.8771-8779.2004 PubMed DOI PMC

Nagy A, Jiřinec T, Jiřincová H, Černíková L, Havlíčková M. In silico re-assessment of a diagnostic RT-qPCR assay for universal detection of Influenza A viruses. Sci Rep. 2019;9: 1630 10.1038/s41598-018-37869-w PubMed DOI PMC

Melzl H, Wenzel JJ, Kochanowski B, Feierabend K, Kreuzpaintner B, Kreuzpaintner E, et al. First sequence-confirmed case of infection with the new influenza A(H1N1) strain in Germany. Euro Surveill. 2009;14: pii: 19203 10.2807/ese.14.18.19203-en PubMed DOI

Surveillance Group for New Influenza A(H1N1) Virus Investigation and Control in Spain. New influenza A(H1N1) virus infections in Spain, April-May 2009. Euro Surveill. 2009;14: pii: 19209 10.2807/ese.14.19.19209-en PubMed DOI

Nakajima K, Desselberger U, Palese P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature. 1978;274: 334–9. 10.1038/274334a0 PubMed DOI

Scholtissek C, von Hoyningen V, Rott R. Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology. 1978;89: 613–7. 10.1016/0042-6822(78)90203-9 PubMed DOI

Slomka MJ, Pavlidis T, Coward VJ, Voermans J, Koch G, Hanna A, et al. Validated RealTime reverse transcriptase PCR methods for the diagnosis and pathotyping of Eurasian H7 avian influenza viruses. Influenza and Other Respiratory Viruses. 2009;3: 151–164. 10.1111/j.1750-2659.2009.00083.x PubMed DOI PMC

Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol. 2008;82: 596–601. 10.1128/JVI.02005-07 PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30: 3059–66. 10.1093/nar/gkf436 PubMed DOI PMC

Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30: 3276–8. 10.1093/bioinformatics/btu531 PubMed DOI PMC

Nagy A, Jiřinec T, Černíková L, Jiřincová H, Havlíčková M. Large-scale nucleotide sequence alignment and sequence variability assessment to identify the evolutionarily highly conserved regions for universal screening PCR assay design: an example of influenza A virus. Methods Mol Biol. 2015;1275: 57–72 10.1007/978-1-4939-2365-6_4 PubMed DOI

Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Resources. 2007;7:965–968.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55: 611–22. 10.1373/clinchem.2008.112797 PubMed DOI

Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, M. Mazzara M, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014;37: 115–126.

BVL, Guidelines for the single-laboratory validation of qualitative real-time PCR methods. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. BVL3; 2016.

Nagy A, Černíková L, Vitásková E, Křivda V, Dán Á, Dirbáková Z, et al. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay. PLoS One. 2016;11: e0151204 10.1371/journal.pone.0151204 PubMed DOI PMC

Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37: e45 10.1093/nar/gkp045 PubMed DOI PMC

Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109: 4269–74. 10.1073/pnas.1116200109 PubMed DOI PMC

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9: e1003657 10.1371/journal.ppat.1003657 PubMed DOI PMC

King J, Schulze Ch, Engelhardt A, Hlinak A, Lennermann S, Rigbers R, et al. Novel HPAIV H5N8 reassortant (clade 2.3.4.4b) detected in Germany. Viruses. 2020;12:281 10.3390/v12030281 PubMed DOI PMC

Loubet P, Enouf V, Launay O. The risk of a swine influenza pandemic: Still a concern? Expert Review of Respiratory Medicine. 2019;13: 803–805. 10.1080/17476348.2019.1645011 PubMed DOI

Van Reeth K. and Vincent AL. Influenza Viruses In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of Swine. John Wiley and Sons Inc; 2019, pp 576–593.

Watson SJ, Langat P, Reid SM, Lam TT, Cotten M, Kelly M, et al. Molecular epidemiology and evolution of influenza viruses circulating within European swine between 2009 and 2013. J Virol. 2015; 89: 9920–31. 10.1128/JVI.00840-15 PubMed DOI PMC

Borland S, Gracieux P, Jones M, Mallet F, Yugueros-Marcos J. Influenza A virus infection in cats and dogs: A literature review in the light of the "One Health" concept. Front Public Health. 2020; 8 10.3389/fpubh.2020.00083 PubMed DOI PMC

Venkatesh D, Bianco C, Nunez A, Collins R, Thorpe D, Reid SM, et al. Detection of H3N8 influenza A virus with multiple mammalian-adaptive mutations in a rescued grey seal (Halichoerus grypus) pup. Virus Evol. 2020; 6: veaa016 10.1093/ve/veaa016 PubMed DOI PMC

Heine HG, Foord AJ Wang J, Valdeter S, Walker S, Morrissy Ch. et al. Detection of highly pathogenic zoonotic influenza virus H5N6 by reverse-transcriptase quantitative polymerase chain reaction. Virol J. 2015;12: 18 10.1186/s12985-015-0250-3 PubMed DOI PMC

Hoffmann B, Hoffmann D, Henritzi D, Beer M, Harder TC. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci Rep. 2016;6: 27211 10.1038/srep27211 PubMed DOI PMC

Alm E, Lesko B, Lindegren G, Ahlm C, Söderholm S, Falk KI, et al. Universal single-probe RT-PCR assay for diagnosis of dengue virus infections. PLoS Negl Trop Dis. 2014;8: e3416 10.1371/journal.pntd.0003416 PubMed DOI PMC

Černíková L, Vitásková E, Nagy A. Development and evaluation of TaqMan real-time PCR assay for detection of beak and feather disease virus. J Virol Methods. 2017;244: 55–60. 10.1016/j.jviromet.2017.02.017 PubMed DOI

Khan KA, Cheung P. Presence of mismatches between diagnostic PCR assays and coronavirus SARS-CoV-2 genome. R. Soc. Open Sci. 2020;7: 200636 10.1098/rsos.200636 PubMed DOI PMC

Suarez DL, Chester N, Hatfield J. Sequencing artifacts in the type A influenza databases and attempts to correct them. Influenza Other Respir Viruses 2014;8: 499–505. 10.1111/irv.12239 PubMed DOI PMC

Krasnitz M, Levine AJ, Rabadan R. Anomalies in the influenza virus genome database: New biology or laboratory errors? J Virol. 2008;82: 8947–50. 10.1128/JVI.00101-08 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...