Genotype Diversity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N1 in the Czech Republic in 2021/2022
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36851507
PubMed Central
PMC9963064
DOI
10.3390/v15020293
PII: v15020293
Knihovny.cz E-resources
- Keywords
- H5N1, HPAI, avian influenza, highly pathogenic avian influenza, outbreak, poultry,
- MeSH
- Poultry MeSH
- Farms MeSH
- Phylogeny MeSH
- Genotype MeSH
- Geese MeSH
- Influenza in Birds * epidemiology MeSH
- Influenza A Virus, H5N1 Subtype * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
In 2021/2022, the re-emergence of highly pathogenic avian influenza (HPAI) occurred in Europe. The outbreak was seeded from two sources: resident and reintroduced viruses, which is unprecedented in the recorded history of avian influenza. The dominant subtype was H5N1, which replaced the H5N8 subtype that had predominated in previous seasons. In this study, we present a whole genome sequence and a phylogenetic analysis of 57 H5N1 HPAI and two low pathogenic avian influenza (LPAI) H5N1 strains collected in the Czech Republic during 2021/2022. Phylogenetic analysis revealed close relationships between H5N1 genomes from poultry and wild birds and secondary transmission in commercial geese. The genotyping showed considerable genetic heterogeneity among Czech H5N1 viruses, with six different HPAI genotypes, three of which were apparently unique. In addition, second-order reassortment relationships were observed with the direct involvement of co-circulating H5N1 LPAI strains. The genetic distance between Czech H5N1 HPAI and the closest LPAI segments available in the database illustrates the profound gaps in our knowledge of circulating LPAI strains. The changing dynamics of HPAI in the wild may increase the likelihood of future HPAI outbreaks and present new challenges in poultry management, biosecurity, and surveillance.
See more in PubMed
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview March–June 2022. EFSA J. 2022;20:7415. PubMed
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Brown I., Mulatti P., Smietanka K., Staubach C., Willeberg P., Adlhoch C., Candiani D., et al. Scientific report on the avian influenza overview October 2016–August 2017. EFSA J. 2017;15:5018. PubMed PMC
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview December 2021–March 2022. EFSA J. 2022;20:7289. PubMed PMC
Poultrymed. [(accessed on 21 October 2022)]. Available online: https://web.archive.org/web/20221021094717/https://www.poultrymed.com/Poultrymed/Templates/showpage.asp?DBID=1&LNGID=1&TMID=178&FID=2948&PID=0&IID=79782.
Lewis N.S., Banyard A.C., Whittard E., Karibayev T., Al Kafagi T., Chvala I., Byrne A., Meruyert Akberovna S., King J., Harder T., et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 2021;10:148–151. doi: 10.1080/22221751.2021.1872355. PubMed DOI PMC
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview August–December 2020. EFSA J. 2020;18:6379.
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview December 2020–February 2021. EFSA J. 2021;19:6497.
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview February–May 2021. EFSA J. 2021;19:6951. PubMed
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview May–September 2021. EFSA J. 2022;20:7122. PubMed PMC
Pohlmann A., King J., Fusaro A., Zecchin B., Banyard A.C., Brown I.H., Byrne A.M.P., Beerens N., Liang Y., Heutink R., et al. Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. mBio. 2022;30:e0060922. doi: 10.1128/mbio.00609-22. PubMed DOI PMC
Nagy A., Černíková L., Stará M. A new clade 2.3.4.4b H5N1 highly pathogenic avian influenza genotype detected in Europe in 2021. Arch. Virol. 2022;167:1455–1459. doi: 10.1007/s00705-022-05442-6. PubMed DOI
EFSA (European Food Safety Authority. ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview September–December 2021. EFSA J. 2021;19:7108.
Nagy A., Černíková L., Stará M., Hofmannová L., Sedlák K. Genotype Uniformity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N8 in the Czech Republic in 2021. Viruses. 2022;14:1411. doi: 10.3390/v14071411. PubMed DOI PMC
Nagy A., Dán Á., Černíková L., Vitásková E., Křivda V., Horníčková J., Masopust R., Sedlák K. Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017. Arch. Virol. 2018;163:2219–2224. doi: 10.1007/s00705-018-3833-7. PubMed DOI
Nagy A., Černíková L., Kunteová K., Dirbáková Z., Thomas S.S., Slomka M.J., Dán Á., Varga T., Máté M., Jiřincová H., et al. A universal RT-qPCR assay for “One Health” detection of influenza A viruses. PLoS ONE. 2021;16:e0244669. doi: 10.1371/journal.pone.0244669. PubMed DOI PMC
Slomka M.J., Pavlidis T., Banks J., Shell W., McNally A., Essen S., Brown I.H. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007;51:373–377. doi: 10.1637/7664-060906R1.1. PubMed DOI
Slomka M.J., Coward V.J., Banks J., Löndt B.Z., Brown I.H., Voermans J., Koch G., Handberg K.J., Jørgensen P.H., Cherbonnel-Pansart M., et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis. 2007;51:227–234. doi: 10.1637/7674-063006R1.1. PubMed DOI
Payungporn S., Chutinimitkul S., Chaisingh A., Damrongwantanapokin S., Buranathai C., Amonsin A., Theamboonlers A., Poovorawan Y. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J. Virol. Methods. 2006;131:143–147. doi: 10.1016/j.jviromet.2005.08.004. PubMed DOI
Arctic Network. [(accessed on 21 October 2022)]. Available online: https://web.archive.org/web/20221021094307/https://artic.network/
Samtools. [(accessed on 21 October 2022)]. Available online: https://web.archive.org/web/20221021094039/http://www.htslib.org/
Influenza Research Database. [(accessed on 21 October 2022)]. Available online: https://web.archive.org/save/https://www.fludb.org/brc/analysis_landing.spg?decorator=influenza.
Katoh K., Rozewicki J., Kazunori K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Trifinopoulos J., Nguyen L.T., Von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
EMMBOS: Union Manual. [(accessed on 21 October 2022)]. Available online: https://web.archive.org/web/20221021093806/https://www.bioinformatics.nl/cgi-bin/emboss/help/union.
To T.-H., Jung M., Lycett S., Gascuel O. Fast dating using least-squares criteria and algorithms. Syst. Biol. 2016;65:82–97. doi: 10.1093/sysbio/syv068. PubMed DOI PMC
Li J., Dohna H., Cardona C.J., Miller J., Carpenter T.E. Emergence and Genetic Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses. PLoS ONE. 2011;6:e14722. doi: 10.1371/journal.pone.0014722. PubMed DOI PMC
Yang Z.Y., Wei C.J., Kong W.P., Wu L., Xu L., Smith D.F., Nabel G.J. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science. 2007;317:825–828. doi: 10.1126/science.1135165. PubMed DOI PMC
Chen L.M., Blixt O., Stevens J., Lipatov A.S., Davis C.T., Collins B.E., Cox N.J., Paulson J.C., Donis R.O. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology. 2012;422:105–113. doi: 10.1016/j.virol.2011.10.006. PubMed DOI PMC
Watanabe Y., Ibrahim M.S., Ellakany H.F., Kawashita N., Mizuike R., Hiramatsu H., Sriwilaijaroen N., Takagi T., Suzuki Y., Ikuta K. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. PLoS Pathog. 2011;7:e1002068. doi: 10.1371/journal.ppat.1002068. PubMed DOI PMC
Li J., Ishaq M., Prudence M., Xi X., Hu T., Liu Q., Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res. 2009;144:123–129. doi: 10.1016/j.virusres.2009.04.008. PubMed DOI
Fan S., Deng G., Song J., Tian G., Suo Y., Jiang Y., Guan Y., Bu Z., Kawaoka Y., Chen H. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384:28–32. doi: 10.1016/j.virol.2008.11.044. PubMed DOI
Gabriel G., Herwig A., Klenk H.D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog. 2008;4:e11. doi: 10.1371/journal.ppat.0040011. PubMed DOI PMC
Bataille A., Van der Meer F., Stegeman A., Koch G. Evolutionary Analysis of Inter-Farm Transmission Dynamics in a Highly Pathogenic Avian Influenza Epidemic. PLoS Pathog. 2011;7:e1002094. doi: 10.1371/journal.ppat.1002094. PubMed DOI PMC
Bouwstra R.J., Koch G., Heutink R., Harders F., Van der Spek A., Elbers A.R., Bossers A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance. 2015;20:21174. doi: 10.2807/1560-7917.ES2015.20.26.21174. PubMed DOI
Venkatesh D., Brouwer A., Goujgoulova G., Ellis R., Seekings J., Brown I.H., Lewis N.S. Regional Transmission and Reassortment of 2.3.4.4b Highly Pathogenic Avian Influenza (HPAI) Viruses in Bulgarian Poultry 2017/18. Viruses. 2020;12:605. doi: 10.3390/v12060605. PubMed DOI PMC
Webster R.G., Guan Y., Peiris M., Walker D., Krauss S., Zhou N.N., Govorkova E.A., Ellis T.M., Dyrting K.C., Sit T., et al. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. J. Virol. 2002;76:118–126. doi: 10.1128/JVI.76.1.118-126.2002. PubMed DOI PMC
Xiang B., Liang J., You R., Han L., Mei K., Chen L., Chen R., Zhang Y., Dai X., Gao P., et al. Pathogenicity and transmissibility of a highly pathogenic avian influenza virus H5N6 isolated from a domestic goose in Southern China. Vet. Microbiol. 2017;212:16–21. doi: 10.1016/j.vetmic.2017.10.022. PubMed DOI
Śmietanka K., Świętoń E., Kozak E., Wyrostek K., Tarasiuk K., Tomczyk G., Konopka B., Welz M., Domańska-Blicharz K., Niemczuk K. Highly Pathogenic Avian Influenza H5N8 in Poland in 2019–2020. J. Vet. Res. 2020;64:469–476. doi: 10.2478/jvetres-2020-0078. PubMed DOI PMC
Park M.J., Cha R.M., Kye S.J., Lee Y.N., Kim N.Y., Baek Y.G., Heo G.B., Sagong M., Lee K.N., Lee Y.J., et al. Pathogenicity of H5N8 High Pathogenicity Avian Influenza Virus in Chickens and Ducks from South Korea in 2020–2021. Viruses. 2021;13:1903. doi: 10.3390/v13101903. PubMed DOI PMC
Scoizec A., Niqueux E., Thomas R., Daniel P., Schmitz A., Le Bouquin S. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France. Front. Vet. Sci. 2018;5:15. doi: 10.3389/fvets.2018.00015. PubMed DOI PMC
Filaire F., Lebre L., Foret-Lucas C., Vergne T., Daniel P., Lelièvre A., De Barros A., Jbenyeni A., Bolon P., Paul M., et al. Highly Pathogenic Avian Influenza A(H5N8) Clade 2.3.4.4b Virus in Dust Samples from Poultry Farms, France, 2021. Emerg. Infect. Dis. 2022;28:1446–1450. doi: 10.3201/eid2807.212247. PubMed DOI PMC
Munster V.J., Baas C., Lexmond P., Waldenström J., Wallensten A., Fransson T., Rimmelzwaan G.F., Beyer W.E., Schutten M., Olsen B., et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog. 2007;3:e61. doi: 10.1371/journal.ppat.0030061. PubMed DOI PMC
Wallensten A., Munster V.J., Latorre-Margalef N., Brytting M., Elmberg J., Fouchier R.A., Fransson T., Haemig P.D., Karlsson M., Lundkvist A., et al. Surveillance of influenza A virus in migratory waterfowl in northern Europe. Emerg. Infect. Dis. 2007;13:404–411. doi: 10.3201/eid1303.061130. PubMed DOI PMC
Dugan V.G., Chen R., Spiro D.J., Sengamalay N., Zaborsky J., Ghedin E., Nolting J., Swayne D.E., Runstadler J.A., Happ G.M., et al. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog. 2008;4:e1000076. doi: 10.1371/journal.ppat.1000076. PubMed DOI PMC
Nagy A., Cerníková L., Jiřincová H., Havlíčková M., Horníčková J. Local-scale diversity and between-year “frozen evolution” of avian influenza A viruses in nature. PLoS ONE. 2014;9:e103053. doi: 10.1371/journal.pone.0103053. PubMed DOI PMC