Genotype Uniformity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N8 in the Czech Republic in 2021
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35891391
PubMed Central
PMC9321741
DOI
10.3390/v14071411
PII: v14071411
Knihovny.cz E-zdroje
- Klíčová slova
- H5N8, HPAI, avian influenza, highly pathogenic avian influenza, outbreak, poultry,
- MeSH
- divoká zvířata MeSH
- drůbež MeSH
- epidemický výskyt choroby veterinární MeSH
- farmy MeSH
- fylogeneze MeSH
- genotyp MeSH
- kur domácí MeSH
- nemoci drůbeže * MeSH
- ptačí chřipka u ptáků * MeSH
- virus chřipky A, podtyp H5N8 * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
In 2020-2021, the second massive dissemination of a highly pathogenic avian influenza of the H5Nx subtype occurred in Europe. During this period, the virus caused numerous outbreaks in poultry, including in the Czech Republic. In the present study, we provide an insight into the genetic variability of the Czech/2021 (CZE/2021) H5N8 viruses to determine the relationships between strains from wild and domestic poultry and to infer transmission routes between the affected flocks of commercial poultry. For this purpose, whole genome sequencing and phylogenetic analysis of 70 H5N8 genomes representing 79.7% of the cases were performed. All CZE/2021 H5N8 viruses belonged to the 2.3.4.4b H5 lineage and circulated without reassortment, retaining the A/chicken/Iraq/1/2020 H5N8-like genotype constellation. Phylogenetic analysis suggested the frequent local transmission of H5N8 from wild birds to backyard poultry and extensive spread among commercial poultry farms. In addition, the analysis suggested one cross-border transmission event. Indirect transmission via contaminated materials was considered the most likely source of infection. Improved biosecurity and increased collaboration between field veterinarians and the laboratory are essential to limit the local spread of the virus and to reveal and interrupt critical routes of infection.
Zobrazit více v PubMed
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific Report: Avian Influenza Overview September–December 2021. EFSA J. 2021;19:7108.
EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific Report: Avian Influenza Overview December 2020–February 2021. EFSA J. 2021;19:6497.
Lewis N.S., Banyard A.C., Whittard E., Karibayev T., Al Kafagi T., Chvala I., Byrne A., Meruyert Akberovna S., King J., Harder T., et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 2021;10:148–151. doi: 10.1080/22221751.2021.1872355. PubMed DOI PMC
Nagy A., Dán Á., Černíková L., Vitásková E., Křivda V., Horníčková J., Masopust R., Sedlák K. Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017. Arch. Virol. 2018;163:2219–2224. doi: 10.1007/s00705-018-3833-7. PubMed DOI
Nagy A., Černíková L., Kunteová K., Dirbáková Z., Thomas S.S., Slomka M.J., Dán Á., Varga T., Máté M., Jiřincová H., et al. A universal RT-qPCR assay for “One Health” detection of influenza A viruses. PLoS ONE. 2021;16:e0244669. doi: 10.1371/journal.pone.0244669. PubMed DOI PMC
Slomka M.J., Pavlidis T., Banks J., Shell W., McNally A., Essen S., Brown I.H. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007;51:373–377. doi: 10.1637/7664-060906R1.1. PubMed DOI
Slomka M.J., Coward V.J., Banks J., Löndt B.Z., Brown I.H., Voermans J., Koch G., Handberg K.J., Jørgensen P.H., Cherbonnel-Pansart M., et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis. 2007;51:227–234. doi: 10.1637/7674-063006R1.1. PubMed DOI
ARTICnetwork. [(accessed on 30 May 2022)]. Available online: https://artic.network/
Samtools. [(accessed on 30 May 2022)]. Available online: http://www.htslib.org/
Katoh K., Rozewicki J., Kazunori K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Emboss Union. [(accessed on 30 May 2022)]. Available online: https://www.bioinformatics.nl/cgi-bin/emboss/help/union.
To T.-H., Jung M., Lycett S., Gascuel O. Fast dating using least-squares criteria and algorithms. Syst. Biol. 2016;65:82–97. doi: 10.1093/sysbio/syv068. PubMed DOI PMC
Zhang Y., Aevermann B.D., Anderson T.K., Burke D.F., Dauphin G., Gu Z., He S., Kumar S., Larsen C.N., Lee A.J., et al. Influenza Research Database: An integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;4:D466–D474. doi: 10.1093/nar/gkw857. PubMed DOI PMC
Baek Y.G., Lee Y.N., Lee D.H., Shin J.I., Lee J.H., Chung D.H., Lee E.K., Heo G.B., Sagong M., Kye S.J., et al. Multiple Reassortants of H5N8 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Viruses Detected in South Korea during the Winter of 2020–2021. Viruses. 2021;13:490. doi: 10.3390/v13030490. PubMed DOI PMC
Śmietanka K., Świętoń E., Kozak E., Wyrostek K., Tarasiuk K., Tomczyk G., Konopka B., Welz M., Domańska-Blicharz K., Niemczuk K. Highly Pathogenic Avian Influenza H5N8 in Poland in 2019–2020. J. Vet. Res. 2020;64:469–476. doi: 10.2478/jvetres-2020-0078. PubMed DOI PMC
Starick E., Beer M., Hoffmann B., Staubach C., Werner O., Globig A., Strebelow G., Grund C., Durban M., Conraths F.J., et al. Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet. Microbiol. 2008;30:243–252. doi: 10.1016/j.vetmic.2007.10.012. PubMed DOI
Verhagen J.H., Fouchier R.A.M., Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses. 2021;30:212. doi: 10.3390/v13020212. PubMed DOI PMC
Velkers F.C., Manders T.T.M., Vernooij J.C.M., Stahl J., Slaterus R., Stegeman J.A. Association of wild bird densities around poultry farms with the risk of highly pathogenic avian influenza virus subtype H5N8 outbreaks in the Netherlands, 2016. Transbound. Emerg. Dis. 2021;68:76–87. doi: 10.1111/tbed.13595. PubMed DOI PMC
Bataille A., van der Meer F., Stegeman A., Koch G. Evolutionary Analysis of Inter-Farm Transmission Dynamics in a Highly Pathogenic Avian Influenza Epidemic. PLoS Pathog. 2011;7:e1002094. doi: 10.1371/journal.ppat.1002094. PubMed DOI PMC
Bouwstra R.J., Koch G., Heutink R., Harders F., van der Spek A., Elbers A.R., Bossers A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Euro Surveill. 2015;20:21174. doi: 10.2807/1560-7917.ES2015.20.26.21174. PubMed DOI
Hill S.C., Lee Y.J., Song B.M., Kang H.M., Lee E.K., Hanna A., Gilbert M., Brown I.H., Pybus O.G. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infect. Genet. Evol. 2015;34:267–277. doi: 10.1016/j.meegid.2015.06.014. PubMed DOI PMC
Sengupta R., Rosenshein L., Gilbert M., Weiller C. Ecoregional dominance in spatial distribution of avian influenza (H5N1) outbreaks. Emerg. Infect. 2007;13:1269–1277. doi: 10.3201/eid1308.070329. PubMed DOI PMC
Pfeiffer D.U., Otte M.J., Roland-Holst D., Inui K., Nguyen T., Zilberman D. Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management. Vet. J. 2011;190:309–316. doi: 10.1016/j.tvjl.2010.12.022. PubMed DOI
Nagy A., Cerníková L., Jiřincová H., Havlíčková M., Horníčková J. Local-scale diversity and between-year “frozen evolution” of avian influenza A viruses in nature. PLoS ONE. 2014;9:e103053. doi: 10.1371/journal.pone.0103053. PubMed DOI PMC
Food and Agriculture Organization of the United Nations, Emergency Prevention System. [(accessed on 10 May 2022)]. Available online: https://empres-i.apps.fao.org/event-report/295058.
Barman S., Marinova-Petkova A., Hasan M.K., Akhtar S., El-Shesheny R., Turner J.C., Franks J., Walker D., Seiler J., Friedman K., et al. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh. Emerg. Microbes Infect. 2017;6:1–12. doi: 10.1038/emi.2017.60. PubMed DOI PMC
Kwon J.H., Lee D.H., Criado M.F., Killmaster L., Ali M.Z., Giasuddin M., Samad M.A., Karim M.R., Hasan M., Brum E., et al. Genetic evolution and transmission dynamics of clade 2.3.2.1a highly pathogenic avian influenza A/H5N1 viruses in Bangladesh. Virus Evol. 2020;6:veaa046. doi: 10.1093/ve/veaa046. PubMed DOI PMC
Slomka M.J., Puranik A., Mahmood S., Thomas S.S., Seekings A.H., Byrne A.M.P., Núñez A., Bianco C., Mollett B.C., Watson S., et al. Ducks Are Susceptible to Infection with a Range of Doses of H5N8 Highly Pathogenic Avian Influenza Virus (2016, Clade 2.3.4.4b) and Are Largely Resistant to Virus-Specific Mortality, but Efficiently Transmit Infection to Contact Turkeys. Avian Dis. 2019;63:172–180. doi: 10.1637/11905-052518-Reg.1. PubMed DOI
Pantin-Jackwood M.J., Costa-Hurtado M., Bertran K., DeJesus E., Smith D., Swayne D. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese. Vet. Res. 2017;48:33. doi: 10.1186/s13567-017-0435-4. PubMed DOI PMC
Conraths F.J., Sauter-Louis C., Globig A., Dietze K., Pannwitz G., Albrecht K., Höreth-Böntgen D., Beer M., Staubach C., Homeier-Bachmann T. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations. Transbound. Emerg. Dis. 2016;63:10–13. doi: 10.1111/tbed.12443. PubMed DOI