Enrichment techniques employed in phosphoproteomics
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22002794
PubMed Central
PMC3418503
DOI
10.1007/s00726-011-1111-z
Knihovny.cz E-zdroje
- MeSH
- barvení a značení MeSH
- chromatografie afinitní MeSH
- fosfoproteiny chemie izolace a purifikace metabolismus MeSH
- fosforylace MeSH
- hmotnostní spektrometrie MeSH
- imunoprecipitace MeSH
- peptidové fragmenty chemie izolace a purifikace metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteom chemie izolace a purifikace metabolismus MeSH
- proteomika MeSH
- rostlinné proteiny chemie izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfoproteiny MeSH
- peptidové fragmenty MeSH
- proteom MeSH
- rostlinné proteiny MeSH
Rapid changes of protein phosphorylation play a crucial role in the regulation of many cellular processes. Being post-translationally modified, phosphoproteins are often present in quite low abundance and tend to co-exist with their unphosphorylated isoform within the cell. To make their identification more practicable, the use of enrichment protocols is often required. The enrichment strategies can be performed either at the level of phosphoproteins or at the level of phosphopeptides. Both approaches have their advantages and disadvantages. Most enriching strategies are based on chemical modifications, affinity chromatography to capture peptides and proteins containing negatively charged phosphate groups onto a positively charged matrix, or immunoprecipitation by phospho-specific antibodies.In this article, the most up-to-date enrichment techniques are discussed, taking into account their optimization, and highlighting their advantages and disadvantages. Moreover, these methods are compared to each other, revealing their complementary nature in providing comprehensive coverage of the phosphoproteome.
Zobrazit více v PubMed
Addeo F, Chobert JM, Ribadeaudumas B. Fractionation of whole casein on hydroxyapatite—application to a study of buffalo kappa-casein. J Dairy Res. 1977;44:63–68. doi: 10.1017/S0022029900019932. PubMed DOI
Ahn YH, Ji ES, Lee JY, Cho K, Yoo JS. Coupling of TiO2-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:3987–3994. doi: 10.1002/rcm.3278. PubMed DOI
Alpert AJ. Hydrophilic interaction chromatography for the separation of peptides, nucleic acids and other compounds. J Chromatogr. 1990;499:177–196. doi: 10.1016/S0021-9673(00)96972-3. PubMed DOI
Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986;154:250–254. doi: 10.1016/0003-2697(86)90523-3. PubMed DOI
Aryal UK, Ross ARS. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:219–231. doi: 10.1002/rcm.4377. PubMed DOI
Augustine RC, Vidali L, Kleinman KP, Bezanilla M. Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J. 2008;54:863–875. doi: 10.1111/j.1365-313X.2008.03451.x. PubMed DOI
Ballesta JPG, Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. Fems Microbiol Rev. 1999;23:537–550. doi: 10.1111/j.1574-6976.1999.tb00412.x. PubMed DOI
Barnouin KN, Hart SR, Thompson AJ, Okuyama M, Waterfield M, Cramer R. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1, 1, 1, 3, 3, 3-hexafluoroisopropanol. Proteomics. 2005;5:4376–4388. doi: 10.1002/pmic.200401323. PubMed DOI
Baskaran R, Chiang GG, Mysliwiec T, Kruh GD, Wang JYJ. Tyrosine phosphorylation of RNA polymerase II carboxyl-terminal domain by the Abl-related gene product. J Biol Chem. 1997;272:18905–18909. doi: 10.1074/jbc.272.30.18905. PubMed DOI
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li JX, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA. 2004;101:12130–12135. doi: 10.1073/pnas.0404720101. PubMed DOI PMC
Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods. 2007;4:231–237. doi: 10.1038/nmeth1005. PubMed DOI
Boersema PJ, Mohammed S, Heck AJR. Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom. 2009;44:861–878. doi: 10.1002/jms.1599. PubMed DOI
Cantin GT, Shock TR, Park SK, Madhani HD, Yates JR. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chem. 2007;79:4666–4673. doi: 10.1021/ac0618730. PubMed DOI PMC
Carrascal M, Ovefletro D, Casas V, Gay M, Ablan J. Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J Proteome Res. 2008;7:5167–5176. doi: 10.1021/pr800500r. PubMed DOI
Chen X, Wu D, Zhao Y, Wong BHC, Guo L. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:25–34. doi: 10.1016/j.jchromb.2010.11.004. PubMed DOI
Collins MO, Yu L, Coba MP, Husi H, Campuzano L, Blackstock WP, Choudhary JS, Grant SGN. Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem. 2005;280:5972–5982. doi: 10.1074/jbc.M411220200. PubMed DOI
Dai J, Jin WH, Sheng QH, Shieh CH, Wu JR, Zeng R. Protein phosphorylation and expression profiling by Yin-Yang multidimensional liquid chromatography (Yin-Yang MDLC) mass spectrometry. J Proteome Res. 2007;6:250–262. doi: 10.1021/pr0604155. PubMed DOI
Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008;105:10762–10767. doi: 10.1073/pnas.0805139105. PubMed DOI PMC
Dubrovska A, Souchelnytskyi S. Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics. 2005;5:4678–4683. doi: 10.1002/pmic.200500002. PubMed DOI
Feng S, Ye ML, Zhou HJ, Jiang XG, Jiang XN, Zou HF, Gong BL. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics. 2007;6:1656–1665. doi: 10.1074/mcp.T600071-MCP200. PubMed DOI
Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20:301–305. doi: 10.1038/nbt0302-301. PubMed DOI
Fletterick RJ, Sprang SR. Glycogen phosphorylase structures and function. Acc Chem Res. 1982;15:361–369. doi: 10.1021/ar00083a004. DOI
Garnak M, Reeves HC. Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science. 1979;203:1111–1112. doi: 10.1126/science.34215. PubMed DOI
Gates MB, Tomer KB, Deterding LJ. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. J Am Soc Mass Spectrom. 2010;21:1649–1659. doi: 10.1016/j.jasms.2010.06.005. PubMed DOI PMC
Gomori G, Benditt EP. Precipitation of calcium phosphate in the histochemical method for phosphatase. J Histochem Cytochem. 1953;1:114–122. doi: 10.1177/1.2.114. PubMed DOI
Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies—Identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1:517–527. doi: 10.1074/mcp.M200010-MCP200. PubMed DOI
Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4:310–327. doi: 10.1074/mcp.M400219-MCP200. PubMed DOI
Han GH, Ye ML, Zhou HJ, Jiang XN, Feng S, Jiang XG, Tian RJ, Wan DF, Zou HF, Gu JR. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics. 2008;8:1346–1361. doi: 10.1002/pmic.200700884. PubMed DOI
Hart SR, Waterfield MD, Burlingame AL, Cramer R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. J Am Soc Mass Spectrom. 2002;13:1042–1051. doi: 10.1016/S1044-0305(02)00432-4. PubMed DOI
Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics. 2005;5:4864–4884. doi: 10.1002/pmic.200402011. PubMed DOI
Hsieh HC, Sheu C, Shi FK, Li DT. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J Chromatogr A. 2007;1165:128–135. doi: 10.1016/j.chroma.2007.08.012. PubMed DOI
Ikeguchi Y, Nakamura H. Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Anal Sci. 1997;13:479–483. doi: 10.2116/analsci.13.479. DOI
Iliuk AB, Martin VA, Alicie BM, Geahlen RL, Tao WA. In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics. 2010;9:2162–2172. doi: 10.1074/mcp.M110.000091. PubMed DOI PMC
Imami K, Sugiyama N, Kyono Y, Tomita M, Ishirama Y. Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nano LC–MS using a calcined titania/C18 biphasic column. Anal Sci. 2008;24:161–166. doi: 10.2116/analsci.24.161. PubMed DOI
Imam-Sghiouar N, Laude-Lemaire I, Labas V, Pflieger D, Le Caer JP, Caron M, Nabias DK, Joubert-Caron R. Subproteomics analysis of phosphorylated proteins: application to the study of B-lymphoblasts from a patient with Scott syndrome. Proteomics. 2002;2:828–838. doi: 10.1002/1615-9861(200207)2:7<828::AID-PROT828>3.0.CO;2-T. PubMed DOI
Imanishi SY, Kochin V, Eriksson JE. Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics. 2007;7:174–176. doi: 10.1002/pmic.200600571. PubMed DOI
Ito J, Taylor NL, Castleden I, Weckwerth W, Millar AH, Heazlewood JL. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics. 2009;9:4229–4240. doi: 10.1002/pmic.200900064. PubMed DOI
Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom. 2007;21:3635–3645. doi: 10.1002/rcm.3254. PubMed DOI
Kinoshita E, Yamada A, Takeda H, Kinoshita-Kikuta E, Koike T. Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Separation Sci. 2005;28:155–162. doi: 10.1002/jssc.200401833. PubMed DOI
Kinoshita-Kikuta E, Kinoshita E, Yamada A, Endo M, Koike T. Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics. 2006;6:5088–5095. doi: 10.1002/pmic.200600252. PubMed DOI
Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem. 2005;77:5144–5154. doi: 10.1021/ac050404f. PubMed DOI
Krüger R, Wolschin F, Weckwerth W, Bettmer J, Lehmann WD. Plant protein phosphorylation monitored by capillary liquid chromatography-element mass spectrometry. Biochem Biophys Res Commun. 2007;355:89–96. doi: 10.1016/j.bbrc.2007.01.108. PubMed DOI
Kweon HK, Håkansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem. 2006;78:1743–1749. doi: 10.1021/ac0522355. PubMed DOI
Kyono Y, Sugiyama N, Imami K, Tomita M, Ishihama Y. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res. 2008;7:4585–4593. doi: 10.1021/pr800305y. PubMed DOI
Lansdell TA, Tepe JJ. Isolation of phosphopeptides using solid phase enrichment. Tetrahedron Lett. 2004;45:91–93. doi: 10.1016/j.tetlet.2003.10.111. DOI
Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4:873–886. doi: 10.1074/mcp.T500007-MCP200. PubMed DOI
Lee J, Xu YD, Chen Y, Sprung R, Kim SC, Xie SH, Zhao YM. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics. 2007;6:669–676. doi: 10.1074/mcp.M600218-MCP200. PubMed DOI PMC
Leitner A. Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem. 2010;29:177–185. doi: 10.1016/j.trac.2009.08.007. DOI
Lenman M, Sorensson C, Andreasson E. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Mol Plant Microbe Interact. 2008;21:1275–1284. doi: 10.1094/MPMI-21-10-1275. PubMed DOI
Li W, Backlund PS, Boykins RA, Wang GY, Chen HC. Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions. Anal Biochem. 2003;323:94–102. doi: 10.1016/j.ab.2003.08.015. PubMed DOI
Li QR, Ning ZB, Tang JS, Nie S, Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res. 2009;8:5375–5381. doi: 10.1021/pr900659n. PubMed DOI
Li YJ, Luo YM, Wu SZ, Gao YH, Liu YX, Zheng DX. Nucleic acids in protein samples interfere with phosphopeptide identification by immobilized-metal-ion affinity chromatography and mass spectrometry. Mol Biotechnol. 2009;43:59–66. doi: 10.1007/s12033-009-9176-6. PubMed DOI
Lind SB, Molin M, Savitski MM, Emilsson L, Åström J, Hedberg L, Adams C, Nielsen ML, Engström A, Elfineh L, Andersson E, Zubarev RA, Pettersson U. Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation. J Proteome Res. 2008;7:2897–2910. doi: 10.1021/pr8000546. PubMed DOI
Machida M, Kosako H, Shirakabe K, Kobayashi M, Ushiyama M, Inagawa J, Hirano J, Nakano T, Bando Y, Nishida E, Hattori S. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. Febs J. 2007;274:1576–1587. doi: 10.1111/j.1742-4658.2007.05705.x. PubMed DOI
Mamone G, Picariello G, Ferranti P, Addeo F. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis. Proteomics. 2010;10:380–393. doi: 10.1002/pmic.200800710. PubMed DOI
Marcantonio M, Trost M, Courcelles M, Desjardins M, Thibault P. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses. Mol Cell Proteomics. 2008;7:645–660. PubMed
Matsuda H, Nakamura H, Nakajima T. New ceramic titania—selective adsorbent for organic phosphates. Anal Sci. 1990;6:911–912. doi: 10.2116/analsci.6.911. DOI
Mazanek M, Mituloviae G, Herzog F, Stingl C, Hutchins JRA, Peters JM, Mechtler K. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nature Prot. 2007;2:U1059–U1069. doi: 10.1038/nprot.2006.280. PubMed DOI
Mazanek M, Roitinger E, Hudecz O, Hutchins JRA, Hegemann B, Mitulović G, Taus T, Stingl C, Peters JM, Mechtler K. A new acid mix enhances phosphopeptide enrichment on titanium- and zirconium dioxide for mapping of phosphorylation sites on protein complexes. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:515–524. doi: 10.1016/j.jchromb.2009.12.017. PubMed DOI
McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7:971–980. doi: 10.1074/mcp.M700543-MCP200. PubMed DOI
Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys. 2006;452:55–68. doi: 10.1016/j.abb.2006.05.001. PubMed DOI
Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA. 2007;104:2199–2204. doi: 10.1073/pnas.0611217104. PubMed DOI PMC
Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K. The role of phosphorylation and the CDC28 protein-kinase in cell-cycle regulated nuclear import of the Saccharomyces cerevisiae transcription factor SWI15. Cell. 1991;66:743–758. doi: 10.1016/0092-8674(91)90118-I. PubMed DOI
Morton RK. Substrate specificity and inhibition of alkaline phosphatases of cows milk and calf intestinal mucosa. Biochem J. 1955;61:232–240. PubMed PMC
Nabetani T, Kim YJ, Watanabe M, Ohashi Y, Kamiguchi H, Hirabayashi Y. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics. Proteomics. 2009;9:5525–5533. doi: 10.1002/pmic.200900341. PubMed DOI
Ndassa YM, Orsi C, Marto JA, Chen S, Ross MM. Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications. J Proteome Res. 2006;5:2789–2799. doi: 10.1021/pr0602803. PubMed DOI
Neville DCA, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 1997;6:2436–2445. doi: 10.1002/pro.5560061117. PubMed DOI PMC
Nie S, Dai J, Ning ZB, Cao XJ, Sheng QH, Zeng R. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET) J Proteome Res. 2010;9:4585–4594. doi: 10.1021/pr100632h. PubMed DOI
Nousiainen M, Sillje HHW, Sauer G, Nigg EA, Korner R. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci USA. 2006;103:5391–5396. doi: 10.1073/pnas.0507066103. PubMed DOI PMC
Nühse TS, Stensballe A, Jensen ON, Peck SC. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell. 2004;16:2394–2405. doi: 10.1105/tpc.104.023150. PubMed DOI PMC
Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol. 2001;19:379–382. doi: 10.1038/86783. PubMed DOI
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–648. doi: 10.1016/j.cell.2006.09.026. PubMed DOI
Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA. 2000;97:179–184. doi: 10.1073/pnas.97.1.179. PubMed DOI PMC
Park SS, Maudsley S. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides. Anal Biochem. 2011;409:81–88. doi: 10.1016/j.ab.2010.10.003. PubMed DOI PMC
Partridge SM (1949) Separation of bases and amino acids by displacement chromatography on ion exchange columns. Discuss Faraday Soc 7:296–305
Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC–ESI–MS/MS and titanium oxide precolumns. Anal Chem. 2004;76:3935–3943. doi: 10.1021/ac0498617. PubMed DOI
Pinto G, Caira S, Cuollo M, Lilla S, Fierro O, Addeo F. Hydroxyapatite as a concentrating probe for phosphoproteomic analyses. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:2669–2678. doi: 10.1016/j.jchromb.2010.07.024. PubMed DOI
Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71:2883–2892. doi: 10.1021/ac981409y. PubMed DOI
Rampitsch C, Subramaniam R, Djuric-Ciganovic S, Bykova NV. The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvation. Proteomics. 2010;10:124–140. doi: 10.1002/pmic.200800399. PubMed DOI
Rihs HP, Jans DA, Fan H, Peters R. The rate of nuclear cytoplasmic protein-transport is determined by the casein kinase-II site flanking the nuclear-localization sequence of the SV40 T-antigen. EMBO J. 1991;10:633–639. PubMed PMC
Röhrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D. Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics. 2008;8:3548–3560. doi: 10.1002/pmic.200700548. PubMed DOI
Rosenbau D. Quantitative analysis of a multicomponent analgesic product containing butalbital, using high speed reverse phase liquid chromatography. Anal Chem. 1974;46:2226–2228. doi: 10.1021/ac60350a011. PubMed DOI
Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005;23:94–101. doi: 10.1038/nbt1046. PubMed DOI
Rusnak F, Zhou J, Hathaway GM. Reaction of phosphorylated and O-glycosylated peptides by chemically targeted identification at ambient temperature. J Biomol Tech. 2004;15:296–304. PubMed PMC
Sano A, Nakamura H. Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci. 2004;20:861–864. doi: 10.2116/analsci.20.861. PubMed DOI
Seeley EH, Riggs LD, Regnier FE. Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme. J Chromatogr B Anal Technol Biomed Life Sci. 2005;817:81–88. doi: 10.1016/j.jchromb.2004.03.024. PubMed DOI
Sheoran IS, Ross ARS, Olson DJH, Sawhney VK. Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci. 2009;176:99–104. doi: 10.1016/j.plantsci.2008.09.015. DOI
Simon ES, Young M, Chan A, Bao ZQ, Andrews PC. Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Anal Biochem. 2008;377:234–242. doi: 10.1016/j.ab.2008.03.024. PubMed DOI PMC
Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF. Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics. 2003;3:1128–1144. doi: 10.1002/pmic.200300434. PubMed DOI
Stensballe A, Jensen ON. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun in Mass Spectrom. 2004;18:1721–1730. doi: 10.1002/rcm.1542. PubMed DOI
Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics. 2007;6:1103–1109. doi: 10.1074/mcp.T600060-MCP200. PubMed DOI
Tang J, Yin P, Lu XH, Qi DW, Mao Y, Deng CH, Yang PY, Zhang XM. Development of mesoporous TiO2 microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis. J Chromatography A. 2010;1217:2197–2205. doi: 10.1016/j.chroma.2010.02.008. PubMed DOI
Tao WA, Wollscheid B, O’Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods. 2005;2:591–598. doi: 10.1038/nmeth776. PubMed DOI
Thaler F, Valsasina B, Baldi R, Jin X, Stewart A, Isacchi A, Kalisz HM, Rusconi L. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem. 2003;376:366–373. PubMed
Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008;7:661–671. PubMed
Tombácz E. pH-dependent surface charging of metal oxides. Periodica Polytechnica Chem Eng. 2009;53:77–86. doi: 10.3311/pp.ch.2009-2.08. DOI
Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics. 2006;5:914–922. doi: 10.1074/mcp.T500041-MCP200. PubMed DOI
Tsai CF, Wang YT, Chen YR, Lai CY, Lin PY, Pan KT, Chen JY, Khoo KH, Chen YJ. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res. 2008;7:4058–4069. doi: 10.1021/pr800364d. PubMed DOI
Villén J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA. 2007;104:1488–1493. doi: 10.1073/pnas.0609836104. PubMed DOI PMC
Warthaka M, Karwowska-Desaulniers P, Pflum MKH. Phosphopeptide modification and enrichment by oxidation-reduction condensation. Acs Chem Biol. 2006;1:697–701. doi: 10.1021/cb6003564. PubMed DOI
Wolschin F, Weckwerth W (2005) Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods 1. doi:10.1186/1746-4811-1-9 PubMed PMC
Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC) Proteomics. 2005;5:4389–4397. doi: 10.1002/pmic.200402049. PubMed DOI
Wu J, Shakey Q, Liu W, Schuller A, Follettie MT. Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res. 2007;6:4684–4689. doi: 10.1021/pr070481m. PubMed DOI
Xia QW, Cheng DM, Duong DM, Gearing M, Lah JJ, Levey AI, Peng JM. Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res. 2008;7:2845–2851. doi: 10.1021/pr8000496. PubMed DOI PMC
Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Ann Rev Biomed Eng. 2009;11:49–79. doi: 10.1146/annurev-bioeng-061008-124934. PubMed DOI
Ye JY, Zhang XM, Young C, Zhao XL, Hao Q, Cheng L, Jensen ON. Optimized IMAC–IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res. 2010;9:3561–3573. doi: 10.1021/pr100075x. PubMed DOI
Zhang GA, Neubert TA. Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS. Proteomics. 2006;6:571–578. doi: 10.1002/pmic.200500267. PubMed DOI
Zhang X, Ye JY, Jensen ON, Roepstorff P. Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics. 2007;6:2032–2042. doi: 10.1074/mcp.M700278-MCP200. PubMed DOI
Zhou HL, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001;19:375–378. doi: 10.1038/86777. PubMed DOI
Zhou SB, Bailey MJ, Dunn MJ, Preedy VR, Emery PW. A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics. 2005;5:2739–2747. doi: 10.1002/pmic.200401178. PubMed DOI
Zhou HJ, Tian RJ, Ye ML, Xu SY, Feng S, Pan CS, Jiang XG, Li X, Zou HF. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis. 2007;28:2201–2215. doi: 10.1002/elps.200600718. PubMed DOI
Zhou HJ, Ye ML, Dong J, Han GH, Jiang XN, Wu RN, Zou HF. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res. 2008;7:3957–3967. doi: 10.1021/pr800223m. PubMed DOI
Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene
A Decade of Pollen Phosphoproteomics
Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment
Male gametophyte development and function in angiosperms: a general concept
Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro