Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro

. 2016 Apr ; 15 (4) : 1338-50. [epub] 20160120

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26792808
Odkazy

PubMed 26792808
PubMed Central PMC4824859
DOI 10.1074/mcp.m115.051672
PII: S1535-9476(20)33625-2
Knihovny.cz E-zdroje

Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.

Zobrazit více v PubMed

Vogler F., Konrad S. S. A., and Sprunck S. (2015) Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen. Front. Plant Sci. 6, 246. PubMed PMC

Mascarenhas J. P. (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5, 1303–1314 PubMed PMC

Mishra N. S., Tuteja R., and Tuteja N. (2006) Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 452, 55–68 PubMed

Francis D., and Halford N. G. (1995) The plant cell cycle. Physiol. Plant. 93, 365–374

van der Kelen K., Beyaert R., Inze D., and de Veylder L. (2009) Translational control of eukaryotic gene expression. Crit. Rev. Biochem. Mol. Biol. 44, 143–168 PubMed

Röhrig H., Colby T., Schmidt J., Harzen A., Facchinelli F., and Bartels D. (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8, 3548–3560 PubMed

Darewicz M., Dziuba J., and Minkiewicz P. (2005) Some properties of beta-casein modified via phosphatase. Acta Alimentaria 34, 403–415

Fletterick R. J., and Sprang S. R. (1982) Glycogen-phosphorylase structures and function. Acc. Chem. Res. 15, 361–369

Kim J., Shen Y., Han Y. J., Park J. E., Kirchenbauer D., Soh M. S., Nagy F., Schafer E., and Song P. S. (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16, 2629–2640 PubMed PMC

Garnak M., and Reeves H. C. (1979) Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203, 1111–1112 PubMed

Fíla J., and Honys D. (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 1025–1047 PubMed PMC

Dunn J. D., Reid G. E., and Bruening M. L. (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 29, 29–54 PubMed

Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., Conrath U., and Beckers G. J. M. (2013) Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell. Proteomics 12, 369–380 PubMed PMC

Beckers G. J., Hoehenwarter W., Röhrig H., Conrath U., and Weckwerth W. (2014) Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. Methods Mol. Biol. 1072, 621–632 PubMed

Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., Nuehse T., and Grossniklaus U. (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 72, 89–101 PubMed

Holmes-Davis R., Tanaka C. K., Vensel W. H., Hurkman W. J., and McCormick S. (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5, 4864–4884 PubMed

Noir S., Bräutigam A., Colby T., Schmidt J., and Panstruga R. (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem. Biophys. Res. Commun. 337, 1257–1266 PubMed

Sheoran I. S., Sproule K. A., Olson D. J. H., Ross A. R. S., and Sawhney V. K. (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex. Plant Reprod. 19, 185–196

Grobei M. A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., Basler K., Ahrens C. H., and Grossniklaus U. (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19, 1786–1800 PubMed PMC

Ischebeck T., Valledor L., Lyon D., Gingl S., Nagler M., Meijon M., Egelhofer V., and Weckwerth W. (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol. Cell. Proteomics 13, 295–310 PubMed PMC

Fíla J., Matros A., Radau S., Zahedi R. P., Čapková V., Mock H.-P., and Honys D. (2012) Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics 12, 3229–3250 PubMed

Wolschin F., Wienkoop S., and Weckwerth W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389–4397 PubMed

Chen Y., Liu P., Hoehenwarter W., and Lin J. (2012) Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J. Proteome Res. 11, 4180–4190 PubMed

Pinkse M. W. H., Uitto P. M., Hilhorst M. J., Ooms B., and Heck A. J. R. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935–3943 PubMed

Petrů E., Hrabětová E., and Tupý J. (1964) The technique of obtaining germinating pollen without microbial contamination. Biologia Plantarum 6, 68–69

Tupý J., and Říhová L. (1984) Changes and growth effect of pH in pollen tube culture. J. Plant Physiol. 115, 1–10 PubMed

Méchin V., Damerval C., and Zivy M. (2006) Total protein extraction with TCA-acetone. In: Thiellement H., Zivy M., Damerval C., and Méchin V., eds. Methods in Mol. Biol., pp. 1–8, Springer PubMed

Kollipara L., and Zahedi R. P. (2013) Protein carbamylation: In vivo modification or in vitro artefact? Proteomics 13, 941–944 PubMed

Beck F., Lewandrowski U., Wiltfang M., Feldmann I., Geiger J., Sickmann A., and Zahedi R. P. (2011) The good, the bad, the ugly: Validating the mass spectrometric analysis of modified peptides. Proteomics 11, 1099–1109 PubMed

Taus T., Koecher T., Pichler P., Paschke C., Schmidt A., Henrich C., and Mechtler K. (2011) Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 PubMed

Vizcaino J. A., Deutsch E. W., Wang R., Csordas A., Reisinger F., Rios D., Dianes J. A., Sun Z., Farrah T., Bandeira N., Binz P. A., Xenarios I., Eisenacher M., Mayer G., Gatto L., Campos A., Chalkley R. J., Kraus H. J., Albar J. P., Martinez-Bartolome S., Apweiler R., Omenn G. S., Martens L., Jones A. R., and Hermjakob H. (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnol. 32, 223–226 PubMed PMC

Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W., Drost L., Ridley P., Hudson S. A., Patel K., Murphy G., Piffanelli P., Wedler H., Wedler E., Wambutt R., Weitzenegger T., Pohl T. M., Terryn N., Gielen J., Villarroel R., De Clerck R., Van Montagu M., Lecharny A., Auborg S., Gy I., Kreis M., Lao N., Kavanagh T., Hempel S., Kotter P., Entian K. D., Rieger M., Schaeffer M., Funk B., Mueller-Auer S., Silvey M., James R., Montfort A., Pons A., Puigdomenech P., Douka A., Voukelatou E., Milioni D., Hatzopoulos P., Piravandi E., Obermaier B., Hilbert H., Dusterhoft A., Moores T., Jones J. D. G., Eneva T., Palme K., Benes V., Rechman S., Ansorge W., Cooke R., Berger C., Delseny M., Voet M., Volckaert G., Mewes H. W., Klosterman S., Schueller C., Chalwatzis N., and Project E. U. A. G. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488 PubMed

Chou M. F., and Schwartz D. (2011) Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics Chapter 13, Unit 13.15–24 PubMed

Schwartz D., and Gygi S. P. (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nature Biotechnol. 23, 1391–1398 PubMed

Rohn H., Junker A., Hartmann A., Grafahrend-Belau E., Treutler H., Klapperstueck M., Czauderna T., Klukas C., and Schreiber F. (2012) VANTED v2: a framework for systems biology applications. BMC Syst. Biol. 6 PubMed PMC

McCoy C. E., Campbell D. G., Deak M., Bloomberg G. B., and Arthur J. S. C. (2005) MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J. 387, 507–517 PubMed PMC

Wang X. M., Paulin F. E. M., Campbell L. E., Gomez E., O'Brien K., Morrice N., and Proud C. G. (2001) Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. EMBO J. 20, 4349–4359 PubMed PMC

Ito J., Taylor N. L., Castleden I., Weckwerth W., Millar A. H., and Heazlewood J. L. (2009) A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 9, 4229–4240 PubMed

Luis Carrasco J., Jose Castello M., Naumann K., Lassowskat I., Navarrete-Gomez M., Scheel D., and Vera P. (2014) Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. Plos One 9, e90734. PubMed PMC

Hultquist D. E. (1968) The preparation and characterization of phosphorylated derivatives of histidine. Biochim Biophys Acta 153, 329–340 PubMed

Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., and Mann M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 PubMed

Molina H., Horn D. M., Tang N., Mathivanan S., and Pandey A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 104, 2199–2204 PubMed PMC

Beausoleil S. A., Jedrychowski M., Schwartz D., Elias J. E., Villén J., Li J. X., Cohn M. A., Cantley L. C., and Gygi S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U.S.A. 101, 12130–12135 PubMed PMC

van Bentem S. D., Anrather D., Dohnal I., Roitinger E., Csaszar E., Joore J., Buijnink J., Carreri A., Forzani C., Lorkovic Z. J., Barta A., Lecourieux D., Verhounig A., Jonak C., and Hirt H. (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Prot. Res. 7, 2458–2470 PubMed

Benschop J. J., Mohammed S., O'Flaherty M., Heck A. J. R., Slijper M., and Menke F. L. H. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214 PubMed

Sugiyama N., Nakagami H., Mochida K., Daudi A., Tomita M., Shirasu K., and Ishihama Y. (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 4, 7 PubMed PMC

Nakagami H., Sugiyama N., Mochida K., Daudi A., Yoshida Y., Toyoda T., Tomita M., Ishihama Y., and Shirasu K. (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153, 1161–1174 PubMed PMC

van Bentem S. D., and Hirt H. (2009) Protein tyrosine phosphorylation in plants: more abundant than expected? Trends Plant Sci. 14, 71–76 PubMed

Mithoe S. C., and Menke F. L. H. (2011) Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochem. 72, 997–1006 PubMed

Zi H. J., Xiang Y., Li M., Wang T., and Ren H. Y. (2007) Reversible protein tyrosine phosphorylation affects pollen germination and pollen tube growth via the actin cytoskeleton. Protoplasma 230, 183–191 PubMed

Oh M. H., Wang X. F., Kota U., Goshe M. B., Clouse S. D., and Huber S. C. (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 658–663 PubMed PMC

Nito K., Wong C. C. L., Yates J. R., and Chory J. (2013) Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep. 3, 1970–1979 PubMed PMC

Čapková V., Hrabětová E., and Tupý J. (1988) Protein synthesis in pollen tubes: preferential formation of new species independent of transcription. Sex. Plant Reprod. 1, 150–155

Hafidh S., Breznenová K., Růžička P., Feciková J., Čapková V., and Honys D. (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 12, 24. PubMed PMC

Hafidh S., Breznenová K., and Honys D. (2012) De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signal. Behav. 7, 918–921 PubMed PMC

Honys D., Combe J. P., Twell D., and Čapková V. (2000) The translationally repressed pollen-specific ntp303 mRNA is stored in nonpolysomal mRNPs during pollen maturation. Sex. Plant Reprod. 13, 135–144

Honys D., Reňák D., Feciková J., Jedelský P. L., Nebesářová J., Dobrev P., and Čapková V. (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 8, 2015–2031 PubMed

Hosp J., Ribarits A., Retzer K., Jin Y. F., Tashpulatov A., Resch T., Friedmann C., Ankele E., Voronin V., Palme K., Heberle-Bors E., and Touraev A. (2014) A tobacco homolog of DCN1 is involved in pollen development and embryogenesis. Plant Cell Rep. 33, 1187–1202 PubMed

Nguyen X. C., Kim S. H., Lee K., Kim K. E., Liu X. M., Han H. J., My H. T. H., Lee S. W., Hong J. C., Moon Y. H., and Chung W. S. (2012) Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Rep. 31, 737–745 PubMed

Lee T. Y., Bretana N. A., and Lu C. T. (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinformatics 12, 13. PubMed PMC

Heberle-Bors E., Voronin V., Touraev A., Testillano P. S., Risueno M. C., and Wilson C. (2001) MAP kinase signaling during pollen development. Sex. Plant Reprod. 14, 15–19

Wilson C., Voronin V., Touraev A., Vicente O., and Heberle-Bors E. (1997) A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9, 2093–2100 PubMed PMC

Klahre U., Becker C., Schmitt A. C., and Kost B. (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 46, 1018–1031 PubMed

Payne D. M., Rossomando A. J., Martino P., Erickson A. K., Her J. H., Shabanowitz J., Hunt D. F., Weber M. J., and Sturgill T. W. (1991) Identification of the regulatory phosphorylation sites in PP42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885–892 PubMed PMC

Lee T.-Y., Lin Z.-Q., Hsieh S.-J., Bretana N. A., and Lu C.-T. (2011) Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27, 1780–1787 PubMed

Huang X.-Y., Niu J., Sun M.-X., Zhu J., Gao J.-F., Yang J., Zhou Q., and Yang Z.-N. (2013) Cyclin-dependent kinase G1 is associated with the spliceosome to regulate callose synthase 5 splicing and pollen wall formation in Arabidopsis. Plant Cell 25, 637–648 PubMed PMC

Poovaiah B. W., Xia M., Liu Z. H., Wang W. Y., Yang T. B., Sathyanarayanan P. V., and Franceschi V. R. (1999) Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta 209, 161–171 PubMed

Hrabak E. M., Chan C. W. M., Gribskov M., Harper J. F., Choi J. H., Halford N., Kudla J., Luan S., Nimmo H. G., Sussman M. R., Thomas M., Walker-Simmons K., Zhu J. K., and Harmon A. C. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666–680 PubMed PMC

Hidalgo P., Garreton V., Berrios C. G., Ojeda H., Jordana X., and Holuigue L. (2001) A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco. Plant Physiol. 125, 396–405 PubMed PMC

Yasuda S., Sato T., Maekawa S., Aoyama S., Fukao Y., and Yamaguchi J. (2014) Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14–3-3 proteins. J. Biol. Chem. 289, 15179–15193 PubMed PMC

Zhai L. W., Zhao P. L., Panebra A., Guerrerio A. L., and Khurana S. (2001) Tyrosine phosphorylation of villin regulates the organization of the actin cytoskeleton. J. Biol. Chem. 276, 36163–36167 PubMed

Geitmann A., and Cresti M. (1998) Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes. J. Plant Physiol. 152, 439–447

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Decade of Pollen Phosphoproteomics

. 2021 Nov 11 ; 22 (22) : . [epub] 20211111

Heat stress response mechanisms in pollen development

. 2021 Jul ; 231 (2) : 571-585. [epub] 20210520

Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics

. 2018 Sep ; 178 (1) : 258-282. [epub] 20180714

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...