Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26792808
PubMed Central
PMC4824859
DOI
10.1074/mcp.m115.051672
PII: S1535-9476(20)33625-2
Knihovny.cz E-zdroje
- MeSH
- fosfoproteiny chemie metabolismus MeSH
- kinetika MeSH
- proteomika metody MeSH
- pyl metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny chemie metabolismus MeSH
- tabák genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- rostlinné proteiny MeSH
Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.
Zobrazit více v PubMed
Vogler F., Konrad S. S. A., and Sprunck S. (2015) Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen. Front. Plant Sci. 6, 246. PubMed PMC
Mascarenhas J. P. (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5, 1303–1314 PubMed PMC
Mishra N. S., Tuteja R., and Tuteja N. (2006) Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 452, 55–68 PubMed
Francis D., and Halford N. G. (1995) The plant cell cycle. Physiol. Plant. 93, 365–374
van der Kelen K., Beyaert R., Inze D., and de Veylder L. (2009) Translational control of eukaryotic gene expression. Crit. Rev. Biochem. Mol. Biol. 44, 143–168 PubMed
Röhrig H., Colby T., Schmidt J., Harzen A., Facchinelli F., and Bartels D. (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8, 3548–3560 PubMed
Darewicz M., Dziuba J., and Minkiewicz P. (2005) Some properties of beta-casein modified via phosphatase. Acta Alimentaria 34, 403–415
Fletterick R. J., and Sprang S. R. (1982) Glycogen-phosphorylase structures and function. Acc. Chem. Res. 15, 361–369
Kim J., Shen Y., Han Y. J., Park J. E., Kirchenbauer D., Soh M. S., Nagy F., Schafer E., and Song P. S. (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16, 2629–2640 PubMed PMC
Garnak M., and Reeves H. C. (1979) Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203, 1111–1112 PubMed
Fíla J., and Honys D. (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 1025–1047 PubMed PMC
Dunn J. D., Reid G. E., and Bruening M. L. (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 29, 29–54 PubMed
Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., Conrath U., and Beckers G. J. M. (2013) Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell. Proteomics 12, 369–380 PubMed PMC
Beckers G. J., Hoehenwarter W., Röhrig H., Conrath U., and Weckwerth W. (2014) Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. Methods Mol. Biol. 1072, 621–632 PubMed
Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., Nuehse T., and Grossniklaus U. (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 72, 89–101 PubMed
Holmes-Davis R., Tanaka C. K., Vensel W. H., Hurkman W. J., and McCormick S. (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5, 4864–4884 PubMed
Noir S., Bräutigam A., Colby T., Schmidt J., and Panstruga R. (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem. Biophys. Res. Commun. 337, 1257–1266 PubMed
Sheoran I. S., Sproule K. A., Olson D. J. H., Ross A. R. S., and Sawhney V. K. (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex. Plant Reprod. 19, 185–196
Grobei M. A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., Basler K., Ahrens C. H., and Grossniklaus U. (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19, 1786–1800 PubMed PMC
Ischebeck T., Valledor L., Lyon D., Gingl S., Nagler M., Meijon M., Egelhofer V., and Weckwerth W. (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol. Cell. Proteomics 13, 295–310 PubMed PMC
Fíla J., Matros A., Radau S., Zahedi R. P., Čapková V., Mock H.-P., and Honys D. (2012) Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics 12, 3229–3250 PubMed
Wolschin F., Wienkoop S., and Weckwerth W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389–4397 PubMed
Chen Y., Liu P., Hoehenwarter W., and Lin J. (2012) Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J. Proteome Res. 11, 4180–4190 PubMed
Pinkse M. W. H., Uitto P. M., Hilhorst M. J., Ooms B., and Heck A. J. R. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935–3943 PubMed
Petrů E., Hrabětová E., and Tupý J. (1964) The technique of obtaining germinating pollen without microbial contamination. Biologia Plantarum 6, 68–69
Tupý J., and Říhová L. (1984) Changes and growth effect of pH in pollen tube culture. J. Plant Physiol. 115, 1–10 PubMed
Méchin V., Damerval C., and Zivy M. (2006) Total protein extraction with TCA-acetone. In: Thiellement H., Zivy M., Damerval C., and Méchin V., eds. Methods in Mol. Biol., pp. 1–8, Springer PubMed
Kollipara L., and Zahedi R. P. (2013) Protein carbamylation: In vivo modification or in vitro artefact? Proteomics 13, 941–944 PubMed
Beck F., Lewandrowski U., Wiltfang M., Feldmann I., Geiger J., Sickmann A., and Zahedi R. P. (2011) The good, the bad, the ugly: Validating the mass spectrometric analysis of modified peptides. Proteomics 11, 1099–1109 PubMed
Taus T., Koecher T., Pichler P., Paschke C., Schmidt A., Henrich C., and Mechtler K. (2011) Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 PubMed
Vizcaino J. A., Deutsch E. W., Wang R., Csordas A., Reisinger F., Rios D., Dianes J. A., Sun Z., Farrah T., Bandeira N., Binz P. A., Xenarios I., Eisenacher M., Mayer G., Gatto L., Campos A., Chalkley R. J., Kraus H. J., Albar J. P., Martinez-Bartolome S., Apweiler R., Omenn G. S., Martens L., Jones A. R., and Hermjakob H. (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnol. 32, 223–226 PubMed PMC
Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W., Drost L., Ridley P., Hudson S. A., Patel K., Murphy G., Piffanelli P., Wedler H., Wedler E., Wambutt R., Weitzenegger T., Pohl T. M., Terryn N., Gielen J., Villarroel R., De Clerck R., Van Montagu M., Lecharny A., Auborg S., Gy I., Kreis M., Lao N., Kavanagh T., Hempel S., Kotter P., Entian K. D., Rieger M., Schaeffer M., Funk B., Mueller-Auer S., Silvey M., James R., Montfort A., Pons A., Puigdomenech P., Douka A., Voukelatou E., Milioni D., Hatzopoulos P., Piravandi E., Obermaier B., Hilbert H., Dusterhoft A., Moores T., Jones J. D. G., Eneva T., Palme K., Benes V., Rechman S., Ansorge W., Cooke R., Berger C., Delseny M., Voet M., Volckaert G., Mewes H. W., Klosterman S., Schueller C., Chalwatzis N., and Project E. U. A. G. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488 PubMed
Chou M. F., and Schwartz D. (2011) Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics Chapter 13, Unit 13.15–24 PubMed
Schwartz D., and Gygi S. P. (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nature Biotechnol. 23, 1391–1398 PubMed
Rohn H., Junker A., Hartmann A., Grafahrend-Belau E., Treutler H., Klapperstueck M., Czauderna T., Klukas C., and Schreiber F. (2012) VANTED v2: a framework for systems biology applications. BMC Syst. Biol. 6 PubMed PMC
McCoy C. E., Campbell D. G., Deak M., Bloomberg G. B., and Arthur J. S. C. (2005) MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J. 387, 507–517 PubMed PMC
Wang X. M., Paulin F. E. M., Campbell L. E., Gomez E., O'Brien K., Morrice N., and Proud C. G. (2001) Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. EMBO J. 20, 4349–4359 PubMed PMC
Ito J., Taylor N. L., Castleden I., Weckwerth W., Millar A. H., and Heazlewood J. L. (2009) A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 9, 4229–4240 PubMed
Luis Carrasco J., Jose Castello M., Naumann K., Lassowskat I., Navarrete-Gomez M., Scheel D., and Vera P. (2014) Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. Plos One 9, e90734. PubMed PMC
Hultquist D. E. (1968) The preparation and characterization of phosphorylated derivatives of histidine. Biochim Biophys Acta 153, 329–340 PubMed
Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., and Mann M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 PubMed
Molina H., Horn D. M., Tang N., Mathivanan S., and Pandey A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 104, 2199–2204 PubMed PMC
Beausoleil S. A., Jedrychowski M., Schwartz D., Elias J. E., Villén J., Li J. X., Cohn M. A., Cantley L. C., and Gygi S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U.S.A. 101, 12130–12135 PubMed PMC
van Bentem S. D., Anrather D., Dohnal I., Roitinger E., Csaszar E., Joore J., Buijnink J., Carreri A., Forzani C., Lorkovic Z. J., Barta A., Lecourieux D., Verhounig A., Jonak C., and Hirt H. (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Prot. Res. 7, 2458–2470 PubMed
Benschop J. J., Mohammed S., O'Flaherty M., Heck A. J. R., Slijper M., and Menke F. L. H. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214 PubMed
Sugiyama N., Nakagami H., Mochida K., Daudi A., Tomita M., Shirasu K., and Ishihama Y. (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 4, 7 PubMed PMC
Nakagami H., Sugiyama N., Mochida K., Daudi A., Yoshida Y., Toyoda T., Tomita M., Ishihama Y., and Shirasu K. (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153, 1161–1174 PubMed PMC
van Bentem S. D., and Hirt H. (2009) Protein tyrosine phosphorylation in plants: more abundant than expected? Trends Plant Sci. 14, 71–76 PubMed
Mithoe S. C., and Menke F. L. H. (2011) Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochem. 72, 997–1006 PubMed
Zi H. J., Xiang Y., Li M., Wang T., and Ren H. Y. (2007) Reversible protein tyrosine phosphorylation affects pollen germination and pollen tube growth via the actin cytoskeleton. Protoplasma 230, 183–191 PubMed
Oh M. H., Wang X. F., Kota U., Goshe M. B., Clouse S. D., and Huber S. C. (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 658–663 PubMed PMC
Nito K., Wong C. C. L., Yates J. R., and Chory J. (2013) Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep. 3, 1970–1979 PubMed PMC
Čapková V., Hrabětová E., and Tupý J. (1988) Protein synthesis in pollen tubes: preferential formation of new species independent of transcription. Sex. Plant Reprod. 1, 150–155
Hafidh S., Breznenová K., Růžička P., Feciková J., Čapková V., and Honys D. (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 12, 24. PubMed PMC
Hafidh S., Breznenová K., and Honys D. (2012) De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signal. Behav. 7, 918–921 PubMed PMC
Honys D., Combe J. P., Twell D., and Čapková V. (2000) The translationally repressed pollen-specific ntp303 mRNA is stored in nonpolysomal mRNPs during pollen maturation. Sex. Plant Reprod. 13, 135–144
Honys D., Reňák D., Feciková J., Jedelský P. L., Nebesářová J., Dobrev P., and Čapková V. (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 8, 2015–2031 PubMed
Hosp J., Ribarits A., Retzer K., Jin Y. F., Tashpulatov A., Resch T., Friedmann C., Ankele E., Voronin V., Palme K., Heberle-Bors E., and Touraev A. (2014) A tobacco homolog of DCN1 is involved in pollen development and embryogenesis. Plant Cell Rep. 33, 1187–1202 PubMed
Nguyen X. C., Kim S. H., Lee K., Kim K. E., Liu X. M., Han H. J., My H. T. H., Lee S. W., Hong J. C., Moon Y. H., and Chung W. S. (2012) Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Rep. 31, 737–745 PubMed
Lee T. Y., Bretana N. A., and Lu C. T. (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinformatics 12, 13. PubMed PMC
Heberle-Bors E., Voronin V., Touraev A., Testillano P. S., Risueno M. C., and Wilson C. (2001) MAP kinase signaling during pollen development. Sex. Plant Reprod. 14, 15–19
Wilson C., Voronin V., Touraev A., Vicente O., and Heberle-Bors E. (1997) A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9, 2093–2100 PubMed PMC
Klahre U., Becker C., Schmitt A. C., and Kost B. (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 46, 1018–1031 PubMed
Payne D. M., Rossomando A. J., Martino P., Erickson A. K., Her J. H., Shabanowitz J., Hunt D. F., Weber M. J., and Sturgill T. W. (1991) Identification of the regulatory phosphorylation sites in PP42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885–892 PubMed PMC
Lee T.-Y., Lin Z.-Q., Hsieh S.-J., Bretana N. A., and Lu C.-T. (2011) Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27, 1780–1787 PubMed
Huang X.-Y., Niu J., Sun M.-X., Zhu J., Gao J.-F., Yang J., Zhou Q., and Yang Z.-N. (2013) Cyclin-dependent kinase G1 is associated with the spliceosome to regulate callose synthase 5 splicing and pollen wall formation in Arabidopsis. Plant Cell 25, 637–648 PubMed PMC
Poovaiah B. W., Xia M., Liu Z. H., Wang W. Y., Yang T. B., Sathyanarayanan P. V., and Franceschi V. R. (1999) Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta 209, 161–171 PubMed
Hrabak E. M., Chan C. W. M., Gribskov M., Harper J. F., Choi J. H., Halford N., Kudla J., Luan S., Nimmo H. G., Sussman M. R., Thomas M., Walker-Simmons K., Zhu J. K., and Harmon A. C. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666–680 PubMed PMC
Hidalgo P., Garreton V., Berrios C. G., Ojeda H., Jordana X., and Holuigue L. (2001) A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco. Plant Physiol. 125, 396–405 PubMed PMC
Yasuda S., Sato T., Maekawa S., Aoyama S., Fukao Y., and Yamaguchi J. (2014) Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14–3-3 proteins. J. Biol. Chem. 289, 15179–15193 PubMed PMC
Zhai L. W., Zhao P. L., Panebra A., Guerrerio A. L., and Khurana S. (2001) Tyrosine phosphorylation of villin regulates the organization of the actin cytoskeleton. J. Biol. Chem. 276, 36163–36167 PubMed
Geitmann A., and Cresti M. (1998) Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes. J. Plant Physiol. 152, 439–447
A Decade of Pollen Phosphoproteomics
Heat stress response mechanisms in pollen development
Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics