A Decade of Pollen Phosphoproteomics

. 2021 Nov 11 ; 22 (22) : . [epub] 20211111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830092

Grantová podpora
19-01723S Czech Science Foundation
LTC20050 Czech Ministry of Education, Youth and Sports

Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.

Zobrazit více v PubMed

Friedman W.E., Floyd S.K. Perspective: The origin of flowering plants and their reproductive biology—A tale of two phylogenies. Evolution. 2001;55:217–231. PubMed

Christensen C.A., Subramanian S., Drews G.N. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev. Biol. 1998;202:136–151. doi: 10.1006/dbio.1998.8980. PubMed DOI

Borg M., Twell D. Life after meiosis: Patterning the angiosperm male gametophyte. Biochem. Soc. T. 2010;38:577–582. doi: 10.1042/BST0380577. PubMed DOI

Williams J.H., Taylor M.L., O’Meara B.C. Repeated evolution of tricellular (and bicellular) pollen. Am. J. Bot. 2014;101:559–571. doi: 10.3732/ajb.1300423. PubMed DOI

Brewbaker J.L. Distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am. J. Bot. 1967;54:1069–1083. doi: 10.1002/j.1537-2197.1967.tb10735.x. DOI

Vogler F., Konrad S.S.A., Sprunck S. Knockin’ on pollen’s door: Live cell imaging of early polarization events in germinating Arabidopsis pollen. Front. Plant Sci. 2015;6:246. doi: 10.3389/fpls.2015.00246. PubMed DOI PMC

Hafidh S., Potěšil D., Fíla J., Feciková J., Čapková V., Zdráhal Z., Honys D. In search of ligands and receptors of the pollen tube: The missing link in pollen tube perception. Biochem. Soc. Trans. 2014;42:388–394. doi: 10.1042/BST20130204. PubMed DOI

Hafidh S., Breznenová K., Růžička P., Feciková J., Čapková V., Honys D. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 2012;12:24. doi: 10.1186/1471-2229-12-24. PubMed DOI PMC

Raghavan V. Some reflections on double fertilization, from its discovery to the present. New Phytol. 2003;159:565–583. doi: 10.1046/j.1469-8137.2003.00846.x. PubMed DOI

Honys D., Reňák D., Feciková J., Jedelský P.L., Nebesářová J., Dobrev P., Čapková V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 2009;8:2015–2031. doi: 10.1021/pr8009897. PubMed DOI

Honys D., Čapková V. Temporal changes in the RNA distribution between polysomes and postpolysomal ribonucleoprotein particles in tobacco male gametophyte. Biol. Plant. 2000;43:517–522. doi: 10.1023/A:1002846105299. DOI

Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z., et al. Dynamics of the pollen sequestrome defined by subcellular coupled -omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC

Čapková V., Hrabětová E., Tupý J. Protein synthesis in pollen tubes: Preferential formation of new species independent of transcription. Sex. Plant Reprod. 1988;1:150–155. doi: 10.1007/BF00193745. DOI

Röhrig H., Colby T., Schmidt J., Harzen A., Facchinelli F., Bartels D. Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics. 2008;8:3548–3560. doi: 10.1002/pmic.200700548. PubMed DOI

Röhrig H., Schmidt J., Colby T., Bräutigam A., Hufnagel P., Bartels D. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 2006;29:1606–1617. doi: 10.1111/j.1365-3040.2006.01537.x. PubMed DOI

Hafidh S., Fíla J., Honys D. Male gametophyte development and function in angiosperms: A general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI

Lindner H., Kessler S.A., Muller L.M., Shimosato-Asano H., Boisson-Dernier A., Grossniklaus U. TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLoS Biol. 2015;13:e1002139. doi: 10.1371/journal.pbio.1002139. PubMed DOI PMC

Palanivelu R., Preuss D. Pollen tube targeting and axon guidance: Parallels in tip growth mechanisms. Trends Cell Biol. 2000;10:517–524. doi: 10.1016/S0962-8924(00)01849-3. PubMed DOI

Hepler P.K., Winship L.J. The pollen tube clear zone: Clues to the mechanism of polarized growth. J. Integr. Plant Biol. 2015;57:79–92. doi: 10.1111/jipb.12315. PubMed DOI

Šamaj J., Muller J., Beck M., Böhm N., Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006;11:594–600. doi: 10.1016/j.tplants.2006.10.002. PubMed DOI

Fíla J., Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012;43:1025–1047. doi: 10.1007/s00726-011-1111-z. PubMed DOI PMC

Dunn J.D., Reid G.E., Bruening M.L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 2010;29:29–54. doi: 10.1002/mas.20219. PubMed DOI

Obaya A.J., Sedivy J.M. Regulation of cyclin-Cdk activity in mammalian cells. Cell. Mol. Life Sci. 2002;59:126–142. doi: 10.1007/s00018-002-8410-1. PubMed DOI PMC

Janek K., Wenschuh H., Bienert M., Krause E. Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2001;15:1593–1599. doi: 10.1002/rcm.417. PubMed DOI

Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., Nuehse T., Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 2012;72:89–101. doi: 10.1111/j.1365-313X.2012.05061.x. PubMed DOI

Alexa A., Rahnenfuhrer J., Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140. PubMed DOI

Fíla J., Matros A., Radau S., Zahedi R.P., Čapková V., Mock H.-P., Honys D. Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics. 2012;12:3229–3250. doi: 10.1002/pmic.201100318. PubMed DOI

Fíla J., Radau S., Matros A., Hartmann A., Scholz U., Feciková J., Mock H.P., Čapková V., Zahedi R.P., Honys D. Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Mol. Cell. Proteom. 2016;15:1338–1350. doi: 10.1074/mcp.M115.051672. PubMed DOI PMC

Chao Q., Gao Z.F., Wang Y.F., Li Z., Huang X.H., Wang Y.C., Mei Y.C., Zhao B.G., Li L., Jiang Y.B., et al. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Plant Mol. Biol. 2016;91:287–304. doi: 10.1007/s11103-016-0466-7. PubMed DOI

Vannini C., Marsoni M., Scoccianti V., Ceccarini C., Domingo G., Bracale M., Crinelli R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J. Proteom. 2019;192:334–345. doi: 10.1016/j.jprot.2018.09.014. PubMed DOI

Jiao Y.P., Peluso P., Shi J.H., Liang T., Stitzer M.C., Wang B., Campbell M.S., Stein J.C., Wei X.H., Chin C.S., et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–527. doi: 10.1038/nature22971. PubMed DOI PMC

Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F.S., Pasternak S., Liang C.Z., Zhang J.W., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Sierro N., Battey J.N.D., Ouadi S., Bakaher N., Bovet L., Willig A., Goepfert S., Peitsch M.C., Ivanov N.V. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 2014;5:3833. doi: 10.1038/ncomms4833. PubMed DOI PMC

Edwards K.D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A.D., Bombarely A., Allen F., Hurst R., White B., Kernodle S.P., et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom. 2017;18:448. doi: 10.1186/s12864-017-3791-6. PubMed DOI PMC

Lee D.H., Goldberg A.L. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol. 1998;8:397–403. doi: 10.1016/S0962-8924(98)01346-4. PubMed DOI

Chen Y., Liu P., Hoehenwarter W., Lin J. Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J. Proteome Res. 2012;11:4180–4190. doi: 10.1021/pr300295m. PubMed DOI

Lee T.Y., Lin Z.Q., Hsieh S.J., Bretana N.A., Lu C.T. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics. 2011;27:1780–1787. doi: 10.1093/bioinformatics/btr291. PubMed DOI

Heberle-Bors E., Voronin V., Touraev A., Testillano P.S., Risueno M.C., Wilson C. MAP kinase signaling during pollen development. Sex. Plant Reprod. 2001;14:15–19. doi: 10.1007/s004970100087. DOI

Takatsuka H., Umeda-Hara C., Umeda M. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 2015;82:1004–1017. doi: 10.1111/tpj.12872. PubMed DOI

Shimotohno A., Matsubayashi S., Yamaguchi M., Uchimiya H., Umeda M. Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. FEBS Lett. 2003;534:69–74. doi: 10.1016/S0014-5793(02)03780-8. PubMed DOI

Huang X.-Y., Niu J., Sun M.-X., Zhu J., Gao J.-F., Yang J., Zhou Q., Yang Z.-N. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE 5 splicing and pollen wall formation in Arabidopsis. Plant Cell. 2013;25:637–648. doi: 10.1105/tpc.112.107896. PubMed DOI PMC

Li D.D., Guan H., Li F., Liu C.Z., Dong Y.X., Zhang X.S., Gao X.Q. Arabidopsis shaker pollen inward K+ channel SPIK functions in SnRK1 complex-regulated pollen hydration on the stigma. J. Integr. Plant Biol. 2017;59:604–611. doi: 10.1111/jipb.12563. PubMed DOI

Gao X.Q., Liu C.Z., Li D.D., Zhao T.T., Li F., Jia X.N., Zhao X.Y., Zhang X.S. The Arabidopsis KIN beta gamma subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. PLoS Genet. 2016;12:e1006228. doi: 10.1371/journal.pgen.1006228. PubMed DOI PMC

Zhao L.-N., Shen L.-K., Zhang W.-Z., Zhang W., Wang Y., Wu W.-H. Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell. 2013;25:649–661. doi: 10.1105/tpc.112.103184. PubMed DOI PMC

Dong C.H., Hong Y. Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep. 2013;32:1715–1728. doi: 10.1007/s00299-013-1482-6. PubMed DOI

Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Procissi A., Guyon A., Pierson E.S., Giritch A., Knuiman B., Grandjean O., Tonelli C., Derksen J., Pelletier G., Bonhomme S. KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 2003;36:894–904. doi: 10.1046/j.1365-313X.2003.01933.x. PubMed DOI

Liu J.J., Zhong S., Guo X.Y., Hao L.H., Wei X.L., Huang Q.P., Hou Y.N., Shi J., Wang C.Y., Gu H.Y., et al. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male–female attraction in Arabidopsis. Curr. Biol. 2013;23:993–998. doi: 10.1016/j.cub.2013.04.043. PubMed DOI

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST plus: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Zhang M.J., Zhang X.S., Gao X.Q. ROS in the male–female interactions during pollination: Function and regulation. Front. Plant Sci. 2020;11:177. doi: 10.3389/fpls.2020.00177. PubMed DOI PMC

Tran H.N.N., Brechenmacher L., Aldrich J.T., Clauss T.R., Gritsenko M.A., Hixson K.K., Libault M., Tanaka K., Yang F., Yao Q.M., et al. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteom. 2012;11:1140–1155. PubMed PMC

Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. doi: 10.1111/tpj.13415. PubMed DOI

Goodstein D.M., Shu S.Q., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–D1186. doi: 10.1093/nar/gkr944. PubMed DOI PMC

Valliyodan B., Cannon S.B., Bayer P.E., Shu S.Q., Brown A.V., Ren L.H., Jenkins J., Chung C.Y.L., Chan T.F., Daum C.G., et al. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J. 2019;100:1066–1082. doi: 10.1111/tpj.14500. PubMed DOI

Schmutz J., Cannon S.B., Schlueter J., Ma J.X., Mitros T., Nelson W., Hyten D.L., Song Q.J., Thelen J.J., Cheng J.L., et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI

Luo X., Chen Z., Gao J., Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 2014;79:44–55. doi: 10.1111/tpj.12534. PubMed DOI

Otterhag L., Gustavsson N., Alsterfjord M., Pical C., Lehrach H., Gobom J., Sommarin M. Arabidopsis PDK1: Identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie. 2006;88:11–21. doi: 10.1016/j.biochi.2005.07.005. PubMed DOI

Xiao Y., Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. Nat. Plants. 2020;6:544–555. doi: 10.1038/s41477-020-0650-2. PubMed DOI

Qu L., Wei Z., Chen H.H., Liu T., Liao K., Xue H.W. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiol. 2021;187:917–930. doi: 10.1093/plphys/kiab284. PubMed DOI PMC

Kang J.M., Wang Z. Mut9p-LIKE KINASE family members: New roles of the plant-specific casein kinase I in plant growth and development. Int. J. Mol. Sci. 2020;21:1562. doi: 10.3390/ijms21051562. PubMed DOI PMC

Ye J.Y., Zhang Z.B., Long H.F., Zhang Z.M., Hong Y., Zhang X.M., You C.J., Liang W.Q., Ma H., Lu P.L. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J. 2015;84:527–544. doi: 10.1111/tpj.13019. PubMed DOI

Chen P., Li R., Zhou R.Y. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. Amino Acids. 2018;50:841–862. doi: 10.1007/s00726-018-2564-0. PubMed DOI

Hafidh S., Honys D. Reproduction multitasking: The male gametophyte. Annu. Rev. Plant Biol. 2021;72:581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace