A Decade of Pollen Phosphoproteomics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-01723S
Czech Science Foundation
LTC20050
Czech Ministry of Education, Youth and Sports
PubMed
34830092
PubMed Central
PMC8619407
DOI
10.3390/ijms222212212
PII: ijms222212212
Knihovny.cz E-zdroje
- Klíčová slova
- kinase motif, male gametophyte, phosphoproteomics, pollen tube, root hair, signal transduction,
- MeSH
- fosfoproteiny metabolismus MeSH
- opylení * MeSH
- proteom metabolismus MeSH
- proteomika * MeSH
- pylová láčka metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fosfoproteiny MeSH
- proteom MeSH
- rostlinné proteiny MeSH
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
Zobrazit více v PubMed
Friedman W.E., Floyd S.K. Perspective: The origin of flowering plants and their reproductive biology—A tale of two phylogenies. Evolution. 2001;55:217–231. PubMed
Christensen C.A., Subramanian S., Drews G.N. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev. Biol. 1998;202:136–151. doi: 10.1006/dbio.1998.8980. PubMed DOI
Borg M., Twell D. Life after meiosis: Patterning the angiosperm male gametophyte. Biochem. Soc. T. 2010;38:577–582. doi: 10.1042/BST0380577. PubMed DOI
Williams J.H., Taylor M.L., O’Meara B.C. Repeated evolution of tricellular (and bicellular) pollen. Am. J. Bot. 2014;101:559–571. doi: 10.3732/ajb.1300423. PubMed DOI
Brewbaker J.L. Distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am. J. Bot. 1967;54:1069–1083. doi: 10.1002/j.1537-2197.1967.tb10735.x. DOI
Vogler F., Konrad S.S.A., Sprunck S. Knockin’ on pollen’s door: Live cell imaging of early polarization events in germinating Arabidopsis pollen. Front. Plant Sci. 2015;6:246. doi: 10.3389/fpls.2015.00246. PubMed DOI PMC
Hafidh S., Potěšil D., Fíla J., Feciková J., Čapková V., Zdráhal Z., Honys D. In search of ligands and receptors of the pollen tube: The missing link in pollen tube perception. Biochem. Soc. Trans. 2014;42:388–394. doi: 10.1042/BST20130204. PubMed DOI
Hafidh S., Breznenová K., Růžička P., Feciková J., Čapková V., Honys D. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 2012;12:24. doi: 10.1186/1471-2229-12-24. PubMed DOI PMC
Raghavan V. Some reflections on double fertilization, from its discovery to the present. New Phytol. 2003;159:565–583. doi: 10.1046/j.1469-8137.2003.00846.x. PubMed DOI
Honys D., Reňák D., Feciková J., Jedelský P.L., Nebesářová J., Dobrev P., Čapková V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 2009;8:2015–2031. doi: 10.1021/pr8009897. PubMed DOI
Honys D., Čapková V. Temporal changes in the RNA distribution between polysomes and postpolysomal ribonucleoprotein particles in tobacco male gametophyte. Biol. Plant. 2000;43:517–522. doi: 10.1023/A:1002846105299. DOI
Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z., et al. Dynamics of the pollen sequestrome defined by subcellular coupled -omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC
Čapková V., Hrabětová E., Tupý J. Protein synthesis in pollen tubes: Preferential formation of new species independent of transcription. Sex. Plant Reprod. 1988;1:150–155. doi: 10.1007/BF00193745. DOI
Röhrig H., Colby T., Schmidt J., Harzen A., Facchinelli F., Bartels D. Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics. 2008;8:3548–3560. doi: 10.1002/pmic.200700548. PubMed DOI
Röhrig H., Schmidt J., Colby T., Bräutigam A., Hufnagel P., Bartels D. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 2006;29:1606–1617. doi: 10.1111/j.1365-3040.2006.01537.x. PubMed DOI
Hafidh S., Fíla J., Honys D. Male gametophyte development and function in angiosperms: A general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI
Lindner H., Kessler S.A., Muller L.M., Shimosato-Asano H., Boisson-Dernier A., Grossniklaus U. TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLoS Biol. 2015;13:e1002139. doi: 10.1371/journal.pbio.1002139. PubMed DOI PMC
Palanivelu R., Preuss D. Pollen tube targeting and axon guidance: Parallels in tip growth mechanisms. Trends Cell Biol. 2000;10:517–524. doi: 10.1016/S0962-8924(00)01849-3. PubMed DOI
Hepler P.K., Winship L.J. The pollen tube clear zone: Clues to the mechanism of polarized growth. J. Integr. Plant Biol. 2015;57:79–92. doi: 10.1111/jipb.12315. PubMed DOI
Šamaj J., Muller J., Beck M., Böhm N., Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006;11:594–600. doi: 10.1016/j.tplants.2006.10.002. PubMed DOI
Fíla J., Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012;43:1025–1047. doi: 10.1007/s00726-011-1111-z. PubMed DOI PMC
Dunn J.D., Reid G.E., Bruening M.L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 2010;29:29–54. doi: 10.1002/mas.20219. PubMed DOI
Obaya A.J., Sedivy J.M. Regulation of cyclin-Cdk activity in mammalian cells. Cell. Mol. Life Sci. 2002;59:126–142. doi: 10.1007/s00018-002-8410-1. PubMed DOI PMC
Janek K., Wenschuh H., Bienert M., Krause E. Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2001;15:1593–1599. doi: 10.1002/rcm.417. PubMed DOI
Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., Nuehse T., Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 2012;72:89–101. doi: 10.1111/j.1365-313X.2012.05061.x. PubMed DOI
Alexa A., Rahnenfuhrer J., Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140. PubMed DOI
Fíla J., Matros A., Radau S., Zahedi R.P., Čapková V., Mock H.-P., Honys D. Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics. 2012;12:3229–3250. doi: 10.1002/pmic.201100318. PubMed DOI
Fíla J., Radau S., Matros A., Hartmann A., Scholz U., Feciková J., Mock H.P., Čapková V., Zahedi R.P., Honys D. Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Mol. Cell. Proteom. 2016;15:1338–1350. doi: 10.1074/mcp.M115.051672. PubMed DOI PMC
Chao Q., Gao Z.F., Wang Y.F., Li Z., Huang X.H., Wang Y.C., Mei Y.C., Zhao B.G., Li L., Jiang Y.B., et al. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Plant Mol. Biol. 2016;91:287–304. doi: 10.1007/s11103-016-0466-7. PubMed DOI
Vannini C., Marsoni M., Scoccianti V., Ceccarini C., Domingo G., Bracale M., Crinelli R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J. Proteom. 2019;192:334–345. doi: 10.1016/j.jprot.2018.09.014. PubMed DOI
Jiao Y.P., Peluso P., Shi J.H., Liang T., Stitzer M.C., Wang B., Campbell M.S., Stein J.C., Wei X.H., Chin C.S., et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–527. doi: 10.1038/nature22971. PubMed DOI PMC
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F.S., Pasternak S., Liang C.Z., Zhang J.W., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI
Sierro N., Battey J.N.D., Ouadi S., Bakaher N., Bovet L., Willig A., Goepfert S., Peitsch M.C., Ivanov N.V. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 2014;5:3833. doi: 10.1038/ncomms4833. PubMed DOI PMC
Edwards K.D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A.D., Bombarely A., Allen F., Hurst R., White B., Kernodle S.P., et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom. 2017;18:448. doi: 10.1186/s12864-017-3791-6. PubMed DOI PMC
Lee D.H., Goldberg A.L. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol. 1998;8:397–403. doi: 10.1016/S0962-8924(98)01346-4. PubMed DOI
Chen Y., Liu P., Hoehenwarter W., Lin J. Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J. Proteome Res. 2012;11:4180–4190. doi: 10.1021/pr300295m. PubMed DOI
Lee T.Y., Lin Z.Q., Hsieh S.J., Bretana N.A., Lu C.T. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics. 2011;27:1780–1787. doi: 10.1093/bioinformatics/btr291. PubMed DOI
Heberle-Bors E., Voronin V., Touraev A., Testillano P.S., Risueno M.C., Wilson C. MAP kinase signaling during pollen development. Sex. Plant Reprod. 2001;14:15–19. doi: 10.1007/s004970100087. DOI
Takatsuka H., Umeda-Hara C., Umeda M. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 2015;82:1004–1017. doi: 10.1111/tpj.12872. PubMed DOI
Shimotohno A., Matsubayashi S., Yamaguchi M., Uchimiya H., Umeda M. Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. FEBS Lett. 2003;534:69–74. doi: 10.1016/S0014-5793(02)03780-8. PubMed DOI
Huang X.-Y., Niu J., Sun M.-X., Zhu J., Gao J.-F., Yang J., Zhou Q., Yang Z.-N. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE 5 splicing and pollen wall formation in Arabidopsis. Plant Cell. 2013;25:637–648. doi: 10.1105/tpc.112.107896. PubMed DOI PMC
Li D.D., Guan H., Li F., Liu C.Z., Dong Y.X., Zhang X.S., Gao X.Q. Arabidopsis shaker pollen inward K+ channel SPIK functions in SnRK1 complex-regulated pollen hydration on the stigma. J. Integr. Plant Biol. 2017;59:604–611. doi: 10.1111/jipb.12563. PubMed DOI
Gao X.Q., Liu C.Z., Li D.D., Zhao T.T., Li F., Jia X.N., Zhao X.Y., Zhang X.S. The Arabidopsis KIN beta gamma subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. PLoS Genet. 2016;12:e1006228. doi: 10.1371/journal.pgen.1006228. PubMed DOI PMC
Zhao L.-N., Shen L.-K., Zhang W.-Z., Zhang W., Wang Y., Wu W.-H. Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell. 2013;25:649–661. doi: 10.1105/tpc.112.103184. PubMed DOI PMC
Dong C.H., Hong Y. Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep. 2013;32:1715–1728. doi: 10.1007/s00299-013-1482-6. PubMed DOI
Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Procissi A., Guyon A., Pierson E.S., Giritch A., Knuiman B., Grandjean O., Tonelli C., Derksen J., Pelletier G., Bonhomme S. KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 2003;36:894–904. doi: 10.1046/j.1365-313X.2003.01933.x. PubMed DOI
Liu J.J., Zhong S., Guo X.Y., Hao L.H., Wei X.L., Huang Q.P., Hou Y.N., Shi J., Wang C.Y., Gu H.Y., et al. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male–female attraction in Arabidopsis. Curr. Biol. 2013;23:993–998. doi: 10.1016/j.cub.2013.04.043. PubMed DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST plus: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Zhang M.J., Zhang X.S., Gao X.Q. ROS in the male–female interactions during pollination: Function and regulation. Front. Plant Sci. 2020;11:177. doi: 10.3389/fpls.2020.00177. PubMed DOI PMC
Tran H.N.N., Brechenmacher L., Aldrich J.T., Clauss T.R., Gritsenko M.A., Hixson K.K., Libault M., Tanaka K., Yang F., Yao Q.M., et al. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteom. 2012;11:1140–1155. PubMed PMC
Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. doi: 10.1111/tpj.13415. PubMed DOI
Goodstein D.M., Shu S.Q., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–D1186. doi: 10.1093/nar/gkr944. PubMed DOI PMC
Valliyodan B., Cannon S.B., Bayer P.E., Shu S.Q., Brown A.V., Ren L.H., Jenkins J., Chung C.Y.L., Chan T.F., Daum C.G., et al. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J. 2019;100:1066–1082. doi: 10.1111/tpj.14500. PubMed DOI
Schmutz J., Cannon S.B., Schlueter J., Ma J.X., Mitros T., Nelson W., Hyten D.L., Song Q.J., Thelen J.J., Cheng J.L., et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI
Luo X., Chen Z., Gao J., Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 2014;79:44–55. doi: 10.1111/tpj.12534. PubMed DOI
Otterhag L., Gustavsson N., Alsterfjord M., Pical C., Lehrach H., Gobom J., Sommarin M. Arabidopsis PDK1: Identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie. 2006;88:11–21. doi: 10.1016/j.biochi.2005.07.005. PubMed DOI
Xiao Y., Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. Nat. Plants. 2020;6:544–555. doi: 10.1038/s41477-020-0650-2. PubMed DOI
Qu L., Wei Z., Chen H.H., Liu T., Liao K., Xue H.W. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiol. 2021;187:917–930. doi: 10.1093/plphys/kiab284. PubMed DOI PMC
Kang J.M., Wang Z. Mut9p-LIKE KINASE family members: New roles of the plant-specific casein kinase I in plant growth and development. Int. J. Mol. Sci. 2020;21:1562. doi: 10.3390/ijms21051562. PubMed DOI PMC
Ye J.Y., Zhang Z.B., Long H.F., Zhang Z.M., Hong Y., Zhang X.M., You C.J., Liang W.Q., Ma H., Lu P.L. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J. 2015;84:527–544. doi: 10.1111/tpj.13019. PubMed DOI
Chen P., Li R., Zhou R.Y. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. Amino Acids. 2018;50:841–862. doi: 10.1007/s00726-018-2564-0. PubMed DOI
Hafidh S., Honys D. Reproduction multitasking: The male gametophyte. Annu. Rev. Plant Biol. 2021;72:581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI