Common Post-translational Modifications (PTMs) of Proteins: Analysis by Up-to-Date Analytical Techniques with an Emphasis on Barley
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37792446
PubMed Central
PMC10591476
DOI
10.1021/acs.jafc.3c00886
Knihovny.cz E-zdroje
- Klíčová slova
- barley, mass spectrometry, post-translational modification, protein,
- MeSH
- fosforylace MeSH
- glykosylace MeSH
- ječmen (rod) * genetika MeSH
- posttranslační úpravy proteinů MeSH
- proteom chemie MeSH
- proteomika metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteom MeSH
Post-translational modifications (PTMs) of biomacromolecules can be useful for understanding the processes by which a relatively small number of individual genes in a particular genome can generate enormous biological complexity in different organisms. The proteomes of barley and the brewing process were investigated by different techniques. However, their diverse and complex PTMs remain understudied. As standard analytical approaches have limitations, innovative analytical approaches need to be developed and applied in PTM studies. To make further progress in this field, it is necessary to specify the sites of modification, as well as to characterize individual isoforms with increased selectivity and sensitivity. This review summarizes advances in the PTM analysis of barley proteins, particularly those involving mass spectrometric detection. Our focus is on monitoring phosphorylation, glycation, and glycosylation, which critically influence functional behavior in metabolism and regulation in organisms.
Zobrazit více v PubMed
Lyon A. S.; Peeples W. B.; Rosen M. K. A framework for understanding the of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 2021, 22, 215–235. 10.1038/s41580-020-00303-z. PubMed DOI PMC
Balotf S.; Wilson R.; Tegg R. S.; Nichols D. S.; Wilson C. R. Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant–pathogen interactions. Proteomes 2022, 10, 5.10.3390/proteomes10010005. PubMed DOI PMC
Kuan S. L.; Bergamini F. R. G.; Weil T. Functional protein nanostructures: a chemical toolbox. Chem. Soc. Rev. 2018, 47, 9069–9105. 10.1039/C8CS00590G. PubMed DOI PMC
Kwon S. J.; Choi E. Y.; Choi Y. J.; Ahn J. H.; Park O. K. Proteomics studies of post-translational modifications in plants. J. Exp. Bot. 2006, 57, 1547–1551. 10.1093/jxb/erj137. PubMed DOI
Reinders J.; Sickmann A. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol. Eng. 2007, 24, 169–177. 10.1016/j.bioeng.2007.03.002. PubMed DOI
Zhao Y.; Jensen O. N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2009, 9, 4632–4641. 10.1002/pmic.200900398. PubMed DOI PMC
Knorre D. G.; Kudryashova N. V.; Godovikova T. S. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 2009, 1, 29–51. 10.32607/20758251-2009-1-3-29-51. PubMed DOI PMC
Ramazi S.; Zahiri J. Post-translational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021, 2021, baab012.10.1093/database/baab012. PubMed DOI PMC
Hensbergen P. J.; de Ru A. H.; Friggen A. H.; Corver J.; Smits W. K.; van Veelen P. A. New insights into the type A glycan modification of Clostridioides difficile flagellar protein flagellin C by phosphoproteomics analysis. J. Biol. Chem. 2022, 298, 101622.10.1016/j.jbc.2022.101622. PubMed DOI PMC
Yang A.; Cho K.; Park H.-S. Chemical biology approaches for studying posttranslational modifications. RNA Biol. 2018, 15, 427–440. 10.1080/15476286.2017.1360468. PubMed DOI PMC
Liu S.; Kerr E. D.; Pegg C. L.; Schulz B. L. Proteomics and glycoproteomics of beer and wine. Proteomics 2022, 22, 2100329.10.1002/pmic.202100329. PubMed DOI
Perdivara I.; Perera L.; Sricholpech M.; Terajima M.; Pleshko N.; Yamauchi M.; Tomer K. B. Unusual fragmentation pathways in collagen glycopeptides. J. Am. Soc. Mass Spectrom. 2013, 24, 1072–1081. 10.1007/s13361-013-0624-y. PubMed DOI PMC
Larsen M. R.; Trelle M. B.; Thingholm T. E.; Jensen O. N. Analysis of posttranslational modifications of proteins by tandem mass spectrometry: Mass Spectrometry for proteomics analysis. Biotechniques 2006, 40, 790–798. 10.2144/000112201. PubMed DOI
Hoffman M. D.; Sniatynski M. J.; Rogalski J. C.; Le Blanc J. C. Y.; Kast J. Multiple neutral loss monitoring (MNM): a multiplexed method for post-translational modification screening. J. Am. Soc. Mass Spectrom. 2006, 17, 307–317. 10.1016/j.jasms.2005.11.002. PubMed DOI
Hammad L. A.; Saleh M. M.; Novotny M. V.; Mechref Y. Multiple-reaction monitoring liquid chromatography mass spectrometry for monosaccharide compositional analysis of glycoproteins. J. Am. Soc. Mass Spectrom. 2009, 20, 1224–1234. 10.1016/j.jasms.2009.02.022. PubMed DOI
Lastovickova M.; Strouhalova D.; Bobalova J. Use of lectin-based affinity techniques in breast cancer glycoproteomics: A review. J. Proteome Res. 2020, 19, 1885–1899. 10.1021/acs.jproteome.9b00818. PubMed DOI
Qing G.; Yan J.; He X.; Li X.; Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt. Chem. 2020, 124, 115570.10.1016/j.trac.2019.06.020. DOI
Riley N. M.; Bertozzi C. R.; Pitteri S. J. A pragmatic guide to enrichment strategies for mass spectrometry–based glycoproteomics. Mol. Cell Proteomics 2021, 20, 100029.10.1074/mcp.R120.002277. PubMed DOI PMC
Ongay S.; Boichenko A.; Govorukhina N.; Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J. Sep. Sci. 2012, 35, 2341–2372. 10.1002/jssc.201200434. PubMed DOI
Xiao H.; Chen W.; Smeekens J. M.; Wu R. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat. Commun. 2018, 9, 1692.10.1038/s41467-018-04081-3. PubMed DOI PMC
Chen Y.; Qin H.; Yue X.; Zhou J.; Liu L.; Nie Y.; Ye M. Highly efficient enrichment of O GlcNAc glycopeptides based on chemical oxidation and reversible hydrazide chemistry. Anal. Chem. 2021, 93, 16618–16627. 10.1021/acs.analchem.1c04031. PubMed DOI
Ikegami T. Hydrophilic interaction chromatography for the analysis ofbiopharmaceutical drugs and therapeutic peptides: A reviewbased on the separation characteristics of the hydrophilicinteraction chromatography phases. J. Sep. Sci. 2019, 42, 130–213. 10.1002/jssc.201801074. PubMed DOI
Palmisano G.; Lendal S. E.; Engholm-Keller K.; Leth-Larsen R.; Parker B. L.; Larsen M. R. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat. Protoc. 2010, 5, 1974–1982. 10.1038/nprot.2010.167. PubMed DOI
Fíla J.; Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2012, 43, 1025–1047. 10.1007/s00726-011-1111-z. PubMed DOI PMC
Liu Z.; He H. Synthesis and Applications of boronate affinity materials: from class selectivity to biomimetic specificity. Acc. Chem. Res. 2017, 50, 2185–2193. 10.1021/acs.accounts.7b00179. PubMed DOI
Nagashima Y.; von Schaewen A.; Koiwa H. Function of N-glycosylation in plants. Plant Sci. 2018, 274, 70–79. 10.1016/j.plantsci.2018.05.007. PubMed DOI
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020, 25, 5755.10.3390/molecules25235755. PubMed DOI PMC
Strasser R.; Seifert G.; Doblin M. S.; Johnson K. L.; Ruprecht C.; Pfrengle F.; Bacic A.; Estevez J. M. Cracking the ″Sugar Code″: A snapshot of N- and O-glycosylation pathways and functions in plants cells. Front. Plant Sci. 2021, 12, 640919.10.3389/fpls.2021.640919. PubMed DOI PMC
Bohlender L. L.; Parsons J.; Hoernstein S. N. W.; Rempfer C.; Ruiz-Molina N.; Lorenz T.; Rodríguez Jahnke F.; Figl R.; Fode B.; Altmann F.; Reski R.; Decker E. L. Stable protein sialylation in Physcomitrella. Front. Plant Sci. 2020, 11, 610032.10.3389/fpls.2020.610032. PubMed DOI PMC
Cho S.-J.; Roman G.; Yeboah F.; Konishi Y. The road to advanced glycation end products: A mechanistic perspective. Curr. Med. Chem. 2007, 14, 1653–1671. 10.2174/092986707780830989. PubMed DOI
Emenike B.; Nwajiobi O.; Raj M. Covalent chemical tools for profiling post-translational modifications. Front. Chem. 2022, 10, 868773.10.3389/fchem.2022.868773. PubMed DOI PMC
Blacken G. R.; Gelb M. H.; Tureček F. Metal affinity capture tandem mass spectrometry for the selective detection of phosphopeptides. Anal. Chem. 2006, 78, 6065–6073. 10.1021/ac060509y. PubMed DOI PMC
Everley R. A.; Huttlin E. L.; Erickson A. R.; Beausoleil S. A.; Gygi S. P. Neutral loss is a very common occurrence in phosphotyrosine containing peptides labeled with isobaric tags. J. Proteome Res. 2017, 16, 1069–1076. 10.1021/acs.jproteome.6b00487. PubMed DOI PMC
Bossio R. E.; Marshall A. G. Baseline resolution of isobaric phosphorylated and sulfated peptides and nucleotides by electrospray ionization FTICR MS: Another step toward mass spectrometry-based proteomics. Anal. Chem. 2002, 74, 1674–1679. 10.1021/ac0108461. PubMed DOI
Gafken P. R.; Lampe P. D. Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun. Adhes. 2006, 13, 249–262. 10.1080/15419060601077917. PubMed DOI PMC
O’Donoghue L.; Smolenski A. Analysis of protein phosphorylation using Phos-tag gels. J. Proteomics 2022, 259, 104558.10.1016/j.jprot.2022.104558. PubMed DOI
Eyrich B.; Sickmann A.; Zahedi R. P. Catch me if you can: Mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics 2011, 11, 554–570. 10.1002/pmic.201000489. PubMed DOI
Amano Y.; Shinohara H.; Sakagami Y.; Matsubayashi Y. Ion-selective enrichment of tyrosine-sulfated peptides from complex protein digests. Anal. Biochem. 2005, 346, 124–131. 10.1016/j.ab.2005.06.047. PubMed DOI
Yang Y.-S.; Wang C.-C.; Chen B.-H.; Hou Y.-H.; Hung K.-S.; Mao Y.-C. Tyrosine sulfation as a protein post-translational modification. Molecules 2015, 20, 2138–2164. 10.3390/molecules20022138. PubMed DOI PMC
Zhao J.; Patwa T. H.; Pal M.; Qiu W.; Lubman D. M. Analysis of protein glycosylation and phosphorylation using liquid phase separation, protein microarray technology, and mass spectrometry. Methods Mol. Biol. 2009, 492, 321–351. 10.1007/978-1-59745-493-3_20. PubMed DOI PMC
Timp W.; Timp G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 2020, 6, eaax8978.10.1126/sciadv.aax8978. PubMed DOI PMC
Yao X. Derivatization or not: A choice in quantitative proteomics. Anal. Chem. 2011, 83, 4427–4439. 10.1021/ac200925p. PubMed DOI
Hermann J.; Schurgers L.; Jankowski V. Identification and characterization of post-translational modifications: Clinical implications. Mol. Asp. Med. 2022, 86, 101066.10.1016/j.mam.2022.101066. PubMed DOI
Restrepo-Pérez L.; Joo C.; Dekker C. Paving the way to single-molecule protein Sequencing. Nat. Nanotechnol. 2018, 13, 786–796. 10.1038/s41565-018-0236-6. PubMed DOI
Kristoffersen H. E.; Flengsrud R. Separation and characterization of basic barley seed proteins. Electrophoresis 2000, 21, 3693–3700. 10.1002/1522-2683(200011)21:17<3693::AID-ELPS3693>3.0.CO;2-I. PubMed DOI
Gundry R. L.; White M. Y.; Murray C. I.; Kane L. A.; Fu Q.; Stanley B. A.; Van Eyk J. E. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. 2009, 10.1002/0471142727.mb1025s88. PubMed DOI PMC
Bandeira N.; Clauser K. R.; Pevzner P. A. Shotgun protein sequencing. Mol. Cell Proteomics 2007, 6, 1123–1134. 10.1074/mcp.M700001-MCP200. PubMed DOI
Mechref Y. Curr. Protoc. Protein Sci. 2012, 10.1002/0471140864.ps1211s68. PubMed DOI PMC
Laštovičková M.; Chmelík J.; Bobalova J. The combination of simple MALDI matrices for the improvement of intact glycoproteins and glycans analysis. Int. J. Mass Spectrom. 2009, 281, 82–88. 10.1016/j.ijms.2008.12.017. DOI
Smolkova D.; Cmelik R.; Lavicka J. Labeling strategies for analysis of oligosaccharides and glycans by capillary electrophoresis. TrAC 2023, 163, 117068.10.1016/j.trac.2023.117068. DOI
Vitorino R.; Guedes S.; da Costa J. P.; Kašička V. Microfluidics for peptidomics, proteomics, and cell analysis. Nanomaterials 2021, 11, 1118.10.3390/nano11051118. PubMed DOI PMC
Monzo A.; Sperling E.; Guttman A. Proteolytic enzyme-immobilization techniques for MS-based protein analysis. TrAC 2009, 28, 854–864. 10.1016/j.trac.2009.03.002. DOI
Novotny J.; Ostatna V.; Foret F. Electrochemical analysis of glycoprotein samples prepared on a pneumatically-controlled microfluidic device. Electroanalysis 2019, 31, 1994–2000. 10.1002/elan.201900275. DOI
Boschetti E.; Zilberstein G.; Righetti P. G. Combinatorial peptides: A library that continuously probes low-abundance proteins. Electrophoresis 2022, 43, 355–369. 10.1002/elps.202100131. PubMed DOI
Zhou C.; Schulz B. L. Glycopeptide variable window SWATH for improved data independent acquisition glycoprotein analysis. Anal. Biochem. 2020, 597, 113667.10.1016/j.ab.2020.113667. PubMed DOI
Rauniyar N.; Yates J. R. III Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 2014, 13, 5293–5309. 10.1021/pr500880b. PubMed DOI PMC
Flodrová D.; Benkovská D.; Laštovičková M. Study of quantitative changes of cereal allergenic proteins after food processing. J. Sci. Food Agric. 2015, 95, 983–990. 10.1002/jsfa.6773. PubMed DOI
Strouhalova D.; Benkovska D.; Bobalova J. iTRAQ-based quantitative proteomic analysis of key barley proteins reveals changes after malting. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 998–1003. 10.1080/10826076.2018.1549069. DOI
Okawara Y.; Hirano H.; Kimura A.; Sato N.; Hayashi Y.; Osada M.; Kawakami T.; Ootake N.; Kinoshita E.; Fujita K. Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE. J. Proteom. 2021, 231, 104005.10.1016/j.jprot.2020.104005. PubMed DOI
Krenkova J.; Moravkova J.; Buk J.; Foret F. Phosphopeptide enrichment with inorganic nanofibers prepared by forcespinning technology. J. Chromatogr. A 2016, 1427, 8–15. 10.1016/j.chroma.2015.12.022. PubMed DOI
Sadras V., Calderini D., Eds. Crop physiology case histories for major crops, 1st ed.; Academic Press: San Francisco, 2020.
Jaeger A.; Zannini E.; Sahin A. W.; Arendt E. K. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods 2021, 10, 1389.10.3390/foods10061389. PubMed DOI PMC
Finne C.; Svensson B.. Barley grain proteins in barley. In Chemistry and Technology American Associate of Cereal Chemists International, 2nd ed.; American Association of Cereal Chemists (AACC), 2014; pp 123–168.
Gorjanović G. A Review: The role of barley seed pathogenesis-related proteins (PRs) in beer production. J. Inst. Brew. 2010, 116, 111–124. 10.1002/j.2050-0416.2010.tb00407.x. DOI
Flodrová D.; Laštovičková M.; Bobálová J. Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography. Cereal Res. Commun. 2016, 44, 286–297. 10.1556/0806.44.2016.019. DOI
Laštovičková M.; Smětalová D.; Bobálová J. The combination of lectin affinity chromatography, gel electrophoresis and mass spectrometry in the study of plant glycoproteome: Preliminary insights. Chromatographia 2011, 73, 113–122. 10.1007/s10337-010-1846-9. DOI
Hashiguchi A.; Komatsu S. Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 2016, 4, 42.10.3390/proteomes4040042. PubMed DOI PMC
Kerr E. D.; Caboche C. H.; Pegg C. L.; Phung T. K.; Gonzalez Viejo C.; Fuentes S.; Howes M. T.; Howell K.; Schulz B. L. The post-translational modification landscape of commercial beers. Sci. Rep. 2021, 11, 15890.10.1038/s41598-021-95036-0. PubMed DOI PMC
Bahmani M.; O’Lone C. E.; Juhász A.; Nye-Wood M.; Dunn H.; Edwards I. B.; Colgrave M. L. Application of mass spectrometry-based proteomics to barley research. J. Agric. Food Chem. 2021, 69, 8591–8609. 10.1021/acs.jafc.1c01871. PubMed DOI PMC
Pennington H. G.; Gheorghe D. M.; Damerum A.; Pliego C.; Spanu P. D.; Cramer R.; Bindschedler L. V. Interactions between the powdery mildew effector BEC1054 and barley proteins identify candidate host targets. J. Proteome Res. 2016, 15, 826–839. 10.1021/acs.jproteome.5b00732. PubMed DOI
Kerr E. D.; Caboche C. H.; Schulz B. J. Posttranslational modifications drive protein stability to control the dynamic beer brewing proteome. Mol. Cell Proteomics 2019, 18, 1721–1731. 10.1074/mcp.RA119.001526. PubMed DOI PMC
Curioni A.; Pressi G.; Furegon L.; Peruffo A. D. P. Major proteins of beer and their precursors in barley: Electrophoretic and immunological studies. J. Agric. Food Chem. 1995, 43, 2620–2626. 10.1021/jf00058a013. DOI
Jégou S.; Douliez J. P.; Mollé D.; Boivin P.; Marion D. Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. J. Agric. Food Chem. 2001, 49, 4942–4949. 10.1021/jf010487a. PubMed DOI
Perrocheau L.; Bakan B.; Boivin P.; Marion D. Stability of barley and malt lipid transfer protein 1 (LTP1) toward heating and reducing agents: Relationships with the brewing process. J. Agric. Food Chem. 2006, 54, 3108–3113. 10.1021/jf052910b. PubMed DOI
Petry-Podgórska I.; Zídková J.; Flodrová D.; Bobálová J. 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 3143–3148. 10.1016/j.jchromb.2010.09.023. PubMed DOI
Spada V.; Di Stasio L.; Picascia S.; Messina B.; Gianfrani C.; Mamone G.; Picariello G. Immunogenic potential of beer types brewed with Hordeum and Triticum spp. Malt disclosed by proteomics. Front. Nutr. 2020, 7, 98.10.3389/fnut.2020.00098. PubMed DOI PMC
Mazanec K.; Bobalova J.; Slais K. Divergent flow isoelectric focusing: fast and efficient method for protein sample preparation for mass spectrometry. Anal. Bioanal. Chem. 2009, 393, 1769–1778. 10.1007/s00216-009-2600-8. PubMed DOI
Bobalova J.; Salplachta J.; Chmelik J. Investigation of protein composition of barley by gel electrophoresis and MALDI mass spectrometry with regard to the malting and brewing process. J. Inst. Brew. 2008, 114, 22–26. 10.1002/j.2050-0416.2008.tb00301.x. DOI
Bobalova J.; Chmelik J. Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1163, 80–85. 10.1016/j.chroma.2007.06.006. PubMed DOI
Chmelik J.; Zidkova J.; Rehulka P.; Petry-Podgorska I.; Bobalova J. Influence of different proteomic protocols on degree of high-coverage identification of nonspecific lipid transfer protein 1 modified during malting. Electrophoresis 2009, 30, 560–567. 10.1002/elps.200800530. PubMed DOI
Bobálová J.; Petry-Podgórska I.; Laštovičková M.; Chmelík J. Monitoring of malting process by characterization of glycation of barley protein Z. Eur. Food Res. Technol. 2010, 230, 665–673. 10.1007/s00217-009-1205-y. DOI
Cho S.; Duong V.-A.; Mok J.-H.; Joo M.; Park J.-M.; Lee H. Enrichment and analysis of glycated proteins. Rev. Anal. Chem. 2022, 41, 83–97. 10.1515/revac-2022-0036. DOI
Ishikawa S.; Barrero J. M.; Takahashi F.; Nakagami H.; Peck S. C.; Gubler F.; Shinozaki K.; Umezawa T. Comparative phosphoproteomic analysis reveals a decay of ABA signaling in barley embryos during after-ripening. Plant Cell Physiol. 2019, 60, 2758–2768. 10.1093/pcp/pcz163. PubMed DOI
Cieśla A.; Mituła F.; Misztal L.; Fedorowicz-Strońska O.; Janicka S.; Tajdel-Zielińska M.; Marczak M.; Janicki M.; Ludwików A.; Sadowski J. A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Front. Plant Sci. 2016, 7, 1550.10.3389/fpls.2016.01550. PubMed DOI PMC
Yu F.; Li M.; He D.; Yang P. Advances on post-translational modifications involved in seed germination. Front. Plant Sci. 2021, 12, 642979.10.3389/fpls.2021.642979. PubMed DOI PMC
Endler A.; Reiland S.; Gerrits B.; Schmidt U. G.; Baginsky S.; Martinoia E. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 2009, 9, 310–321. 10.1002/pmic.200800323. PubMed DOI
Wang J.; Li C.; Yao L.; Ma Z.; Ren P.; Si E.; Li B.; Meng Y.; Ma X.; Yang E.; Shang X.; Wang H. Global proteome analyses of phosphorylation and succinylation of barley root proteins in response to phosphate starvation and recovery. Front. Plant Sci. 2022, 13, 917652.10.3389/fpls.2022.917652. PubMed DOI PMC
Ma Z.; Wang J.; Li C.; Ren P.; Yao L.; Li B.; Meng Y.; Ma X.; Si E.; Yang K.; Shang X.; Wang H. Global profiling of phosphorylation reveals the barley roots response to phosphorus starvation and resupply. Front. Plant Sci. 2021, 12, 676432.10.3389/fpls.2021.676432. PubMed DOI PMC
Wang J.; Li C.; Yao L.; Ma Z.; Ren P.; Si E.; Li B.; Meng Y.; Ma X.; Yang K.; Shang X.; Wang H. Global proteome analyses of phosphorylation and succinylation of barley root proteins in response to phosphate starvation and recovery. Front. Plant Sci. 2022, 13, 917652.10.3389/fpls.2022.917652. PubMed DOI PMC
Weiß L.; Gaelings L.; Reiner T.; Mergner J.; Kuster B.; Fehér A.; Hensel G.; Gahrtz M.; Kumlehn J.; Engelhardt S.; Hückelhoven R. Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS One 2022, 17, e025892410.1371/journal.pone.0258924. PubMed DOI PMC
Sharma M.; Fuertes D.; Perez-Gil J.; Lois L. M. SUMOylation in phytopathogen interactions: Balancing invasion and resistance. Front. Cell Dev. Biol. 2021, 9, 703795.10.3389/fcell.2021.703795. PubMed DOI PMC
Wang X.; Deng X.; Zhu D.; Duan W.; Zhang J.; Yan Y. N-linked glycoproteome analysis reveals central glycosylated proteins involved in wheat early seedling growth. Plant Physiol. Biochem. 2021, 163, 327–337. 10.1016/j.plaphy.2021.04.009. PubMed DOI
Luo F.; Deng X.; Liu Y.; Yan Y. Identification of phosphorylation proteins in response to water deficit during wheat fag leaf and grain development. Bot. Stud. 2018, 59, 28.10.1186/s40529-018-0245-7. PubMed DOI PMC
Tappiban P.; Ying Y.; Xu F.; Bao J. Proteomics and post-translational modifications of starch biosynthesis-related proteins in developing seeds of rice. Int. J. Mol. Sci. 2021, 22, 5901.10.3390/ijms22115901. PubMed DOI PMC
Liu F.; Ahmed Z.; Lee E. A.; Donner E.; Liu Q.; Ahmed R.; Morell M. K.; Emes M. J.; Tetlow I. J. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions. J. Exp. Bot. 2012, 63, 1167–1183. 10.1093/jxb/err341. PubMed DOI PMC
Mehrpouyan S.; Menon U.; Tetlow I. J.; Emes M. J. Protein phosphorylation regulates maize endosperm starch synthase IIa activity and protein–protein interactions. J. Plant Res. 2021, 105, 1098–1112. 10.1111/tpj.15094. PubMed DOI
Tatham A. S.; Shewry P. R. Allergens to wheat and related cereals. Clin. Exp. Allergy 2008, 38, 1712–1726. 10.1111/j.1365-2222.2008.03101.x. PubMed DOI
Geisslitz S.; Shewry P.; Brouns F.; America A. H. P.; Caio G. P. I.; Daly M.; D’Amico S.; De Giorgio R.; Gilissen L.; Grausgruber H.; Huang X.; Jonkers D.; Keszthelyi D.; Larré C.; Masci S.; Mills C.; Møller M. S.; Sorrells M. E.; Svensson B.; Zevallos V. F.; Weegels P. L. Wheat ATIs: Characteristics and role in human disease. Front. Nutr. 2021, 8, 667370.10.3389/fnut.2021.667370. PubMed DOI PMC
García-Casado G.; Crespo J. F.; Rodríguez J.; Salcedo G. Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens. J. Allergy Clin. Immunol. 2001, 108, 647–649. 10.1067/mai.2001.118793. PubMed DOI