Microfluidics for Peptidomics, Proteomics, and Cell Analysis

. 2021 Apr 26 ; 11 (5) : . [epub] 20210426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33925983

Grantová podpora
1223 Fundação para a Ciência e a Tecnologia

Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.

Zobrazit více v PubMed

Lee W., Tseng P., Di Carlo D. Microtechnology for Cell Manipulation and Sorting. Springer; Berlin/Heidelberg, Germany: 2017. Microfluidic Cell Sorting and Separation Technology; pp. 1–14.

Gao D., Song C., Lin J.-M. Microfluidics for Single-Cell Analysis. Springer; Berlin/Heidelberg, Germany: 2019. Microfluidics-Mass Spectrometry Combination Systems for Single-Cell Analysis; pp. 163–195.

Liu Y., Yang Q., Cao L., Xu F. Analysis of Leukocyte Behaviors on Microfluidic Chips. Adv. Healthc. Mater. 2019;8:1801406. doi: 10.1002/adhm.201801406. PubMed DOI

Chiu D.T., deMello A.J., Di Carlo D., Doyle P.S., Hansen C., Maceiczyk R.M., Wootton R.C. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem. 2017;2:201–223. doi: 10.1016/j.chempr.2017.01.009. DOI

Conde J.P., Madaboosi N., Soares R.R., Fernandes J.T.S., Novo P., Moulas G., Chu V. Lab-on-chip systems for integrated bioanalyses. Essays Biochem. 2016;60:121–131. PubMed PMC

Narayanamurthy V., Jeroish Z., Bhuvaneshwari K., Bayat P., Premkumar R., Samsuri F., Yusoff M.M. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis. RSC Adv. 2020;10:11652–11680. doi: 10.1039/D0RA00263A. PubMed DOI PMC

Manz A., Graber N., Widmer H.Á. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990;1:244–248. doi: 10.1016/0925-4005(90)80209-I. DOI

Bragheri F., Vázquez R.M., Osellame R. Three-Dimensional Microfabrication Using Two-Photon Polymerization. Elsevier; Amsterdam, The Netherlands: 2020. Microfluidics; pp. 493–526.

Bai Y., Gao M., Wen L., He C., Chen Y., Liu C., Fu X., Huang S. Applications of Microfluidics in Quantitative Biology. Biotechnol. J. 2018;13:e1700170. doi: 10.1002/biot.201700170. PubMed DOI

Loo J.A., Udseth H.R., Smith R.D. Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal. Biochem. 1989;179:404–412. doi: 10.1016/0003-2697(89)90153-X. PubMed DOI

Kammeijer G.S., Kohler I., Jansen B.C., Hensbergen P.J., Mayboroda O.A., Falck D., Wuhrer M. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis–electrospray ionization-mass spectrometry for improved sensitivity and repeatability in glycopeptide analysis. Anal. Chem. 2016;88:5849–5856. doi: 10.1021/acs.analchem.6b00479. PubMed DOI

Barry R., Ivanov D. Microfluidics in biotechnology. J. Nanobiotechnol. 2004;2:2. doi: 10.1186/1477-3155-2-2. PubMed DOI PMC

Soloviev M., Barry R., Scrivener E., Terrett J. Combinatorial peptidomics: A generic approach for protein expression profiling. J. Nanobiotechnol. 2003;1:4. doi: 10.1186/1477-3155-1-4. PubMed DOI PMC

Caicedo H.H., Brady S.T. Microfluidics: The challenge is to bridge the gap instead of looking for a ‘killer app’. Trends Biotechnol. 2016;34:1–3. doi: 10.1016/j.tibtech.2015.10.003. PubMed DOI

Fu Y.Q., Luo J., Nguyen N.-T., Walton A., Flewitt A.J., Zu X.-T., Li Y., McHale G., Matthews A., Iborra E. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017;89:31–91. doi: 10.1016/j.pmatsci.2017.04.006. DOI

Dekker S., Buesink W., Blom M., Alessio M., Verplanck N., Hihoud M., Dehan C., César W., Le Nel A., van den Berg A. Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 2018;272:468–478. doi: 10.1016/j.snb.2018.04.005. DOI

Sollier E., Kochersperger M.L., Englert R.F., Che J., Huang K.-W., Boyce-Jacino M., Neddersen A., Passernig A., Richardson B., Choi I. Microfluidic Chips and Cartridges and Systems Utilizing Microfluidic Chips and Cartridges. Application No. PCT/US2017/027959. International Patent. 2017 Apr 17;

Wu J., He Z., Chen Q., Lin J.-M. Biochemical analysis on microfluidic chips. Trac Trends Anal. Chem. 2016;80:213–231. doi: 10.1016/j.trac.2016.03.013. DOI

Tran D.Q. Ph.D. Thesis. Nanyang Technological University; Singapore: 2017. Microfluidic Studies on Flow Manipulation to Assist Metastasis Research.

Mao X., Huang T.J. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12:1412–1416. doi: 10.1039/c2lc90022j. PubMed DOI PMC

Piccin E., Ferraro D., Sartori P., Chiarello E., Pierno M., Mistura G. Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices. Sens. Actuators B Chem. 2014;196:525–531. doi: 10.1016/j.snb.2014.02.042. DOI

Silvestrini S., Ferraro D., Tóth T., Pierno M., Carofiglio T., Mistura G., Maggini M. Tailoring the wetting properties of thiolene microfluidic materials. Lab Chip. 2012;12:4041–4043. doi: 10.1039/c2lc40651a. PubMed DOI

Sollier K., Mandon C.A., Heyries K.A., Blum L.J., Marquette C.A. “Print-n-Shrink” technology for the rapid production of microfluidic chips and protein microarrays. Lab Chip. 2009;9:3489–3494. doi: 10.1039/b913253h. PubMed DOI

Taylor D., Dyer D., Lew V., Khine M. Shrink film patterning by craft cutter: Complete plastic chips with high resolution/high-aspect ratio channel. Lab Chip. 2010;10:2472–2475. doi: 10.1039/c004737f. PubMed DOI

Wang W., Zhao S., Pan T. Lab-on-a-print: From a single polymer film to three-dimensional integrated microfluidics. Lab Chip. 2009;9:1133–1137. doi: 10.1039/b816287e. PubMed DOI

Yuen P.K., Goral V.N. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip. 2010;10:384–387. doi: 10.1039/B918089C. PubMed DOI

Halldorsson S., Lucumi E., Gómez-Sjöberg R., Fleming R.M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015;63:218–231. doi: 10.1016/j.bios.2014.07.029. PubMed DOI

Nguyen H.-T., Thach H., Roy E., Huynh K., Perrault C.M.-T. Low-Cost, Accessible Fabrication Methods for Microfluidics Research in Low-Resource Settings. Micromachines. 2018;9:461. doi: 10.3390/mi9090461. PubMed DOI PMC

Tsao C.-W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines. 2016;7:225. doi: 10.3390/mi7120225. PubMed DOI PMC

Wang J.D., Douville N.J., Takayama S., El Sayed M. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann. Biomed. Eng. 2012;40:1862–1873. doi: 10.1007/s10439-012-0562-z. PubMed DOI

Thach H., Nguyen H.-T., Tong U., Hoang T., Vuong T.-A., Perrault C.M., Huynh K. Comparison of Nail Polish Meth (Acrylates)(MA) Gel Photoresist and Vinyl Adhesive Paper for Low-Cost Microfluidics Fabrication; Proceedings of the 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6); Ho Chi Minh, Vietnam. 27–29 June 2018; Berlin/Heidelberg, Germany: Springer; 2018. pp. 323–329.

Song Y., Cheng D., Zhao L., Lei K. Microfluidics: Fundamentals, Devices and Applications. Wiley; Hoboken, NJ, USA: 2017. Introduction: The Origin, Current Status, and Future of Microfluidics.

Arabghahestani M., Poozesh S., Akafuah N.K. Advances in computational fluid mechanics in cellular flow manipulation: A review. Appl. Sci. 2019;9:4041. doi: 10.3390/app9194041. DOI

Viovy J.-L., Malaquin L., Begolo S., Cherif A.A., Descroix S. Microfluidic System. 20140342373. U.S. Patent. 2014 Nov 20;

Kaminski T.S., Scheler O., Garstecki P. Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip. 2016;16:2168–2187. doi: 10.1039/C6LC00367B. PubMed DOI

Karimi A., Yazdi S., Ardekani A. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 2013;7:021501. doi: 10.1063/1.4799787. PubMed DOI PMC

Di Carlo D., Irimia D., Tompkins R.G., Toner M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA. 2007;104:18892–18897. doi: 10.1073/pnas.0704958104. PubMed DOI PMC

Evander M., Johansson L., Lilliehorn T., Piskur J., Lindvall M., Johansson S., Almqvist M., Laurell T., Nilsson J. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal. Chem. 2007;79:2984–2991. doi: 10.1021/ac061576v. PubMed DOI

Ozcelik A., Rufo J., Guo F., Gu Y., Li P., Lata J., Huang T.J. Acoustic tweezers for the life sciences. Nat. Methods. 2018;15:1021–1028. doi: 10.1038/s41592-018-0222-9. PubMed DOI PMC

Chu S., Bjorkholm J., Ashkin A., Cable A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 1986;57:314. doi: 10.1103/PhysRevLett.57.314. PubMed DOI

Lenshof A., Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 2010;39:1203–1217. doi: 10.1039/b915999c. PubMed DOI

Van Reenen S., Vitorino M., Meskers S., Janssen R., Kemerink M. Photoluminescence quenching in films of conjugated polymers by electrochemical doping. Phys. Rev. B. 2014;89:205206. doi: 10.1103/PhysRevB.89.205206. DOI

Puri I.K., Ganguly R. Particle transport in therapeutic magnetic fields. Annu. Rev. Fluid Mech. 2014;46:407–440. doi: 10.1146/annurev-fluid-010313-141413. DOI

Berthier J., Brakke K.A., Berthier E. Open Microfluidics. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Melin J., van der Wijngaart W., Stemme G. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels. Lab Chip. 2005;5:682–686. doi: 10.1039/b501781e. PubMed DOI

Li X., Ballerini D.R., Shen W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics. 2012;6:011301. doi: 10.1063/1.3687398. PubMed DOI PMC

Ballerini D.R., Li X., Shen W. Flow control concepts for thread-based microfluidic devices. Biomicrofluidics. 2011;5:014105. doi: 10.1063/1.3567094. PubMed DOI PMC

Jahn A., Reiner J.E., Vreeland W.N., DeVoe D.L., Locascio L.E., Gaitan M. Preparation of nanoparticles by continuous-flow microfluidics. J. Nanopart. Res. 2008;10:925–934. doi: 10.1007/s11051-007-9340-5. DOI

Seemann R., Brinkmann M., Pfohl T., Herminghaus S. Droplet based microfluidics. Rep. Prog. Phys. 2011;75:016601. doi: 10.1088/0034-4885/75/1/016601. PubMed DOI

Zhang Y., Nguyen N.-T. Magnetic digital microfluidics—A review. Lab Chip. 2017;17:994–1008. doi: 10.1039/C7LC00025A. PubMed DOI

Samiei E., Tabrizian M., Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16:2376–2396. doi: 10.1039/C6LC00387G. PubMed DOI

Choi K., Ng A.H., Fobel R., Wheeler A.R. Digital microfluidics. Annu. Rev. Anal. Chem. 2012;5:413–440. doi: 10.1146/annurev-anchem-062011-143028. PubMed DOI

Jebrail M.J., Wheeler A.R. Let’s get digital: Digitizing chemical biology with microfluidics. Curr. Opin. Chem. Biol. 2010;14:574–581. doi: 10.1016/j.cbpa.2010.06.187. PubMed DOI

Ericson C., Holm J., Ericson T., Hjerten S. Electroosmosis-and pressure-driven chromatography in chips using continuous beds. Anal. Chem. 2000;72:81–87. doi: 10.1021/ac990802g. PubMed DOI

Kecskemeti A., Gaspar A. Particle-based liquid chromatographic separations in microfluidic devices—A review. Anal. Chim. Acta. 2018;1021:1–19. doi: 10.1016/j.aca.2018.01.064. PubMed DOI

Godinho J.M., Reising A.E., Tallarek U., Jorgenson J.W. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns. J. Chromatogr. A. 2016;1462:165–169. doi: 10.1016/j.chroma.2016.08.002. PubMed DOI PMC

Depluverez S., Daled S., De Waele S., Planckaert S., Schoovaerts J., Deforce D., Devreese B., Devreese B., Ledeganckstraat K. Microfluidics-based LC-MS MRM approach for the relative quantification of Burkholderia cenocepacia secreted virulence factors. Rapid Commun. Mass Spectrom. 2018 doi: 10.1002/rcm.8059. PubMed DOI

Li D., Chen H., Ren S., Zhang Y., Yang Y., Chang H. Portable liquid chromatography for point-of-care testing of glycated haemoglobin. Sens. Actuators B Chem. 2020;305:127484. doi: 10.1016/j.snb.2019.127484. DOI

Piendl S.K., Geissler D., Weigelt L., Belder D. Multiple Heart-Cutting Two-Dimensional Chip-HPLC Combined with Deep-UV Fluorescence and Mass Spectrometric Detection. Anal. Chem. 2020;92:3795–3803. doi: 10.1021/acs.analchem.9b05206. PubMed DOI

Wang S., Wang X., Wang L., Pu Q., Du W., Guo G. Plasma-assisted alignment in the fabrication of microchannel-array-based in-tube solid-phase microextraction microchips packed with TiO(2) nanoparticles for phosphopeptide analysis. Anal. Chim. Acta. 2018;1018:70–77. doi: 10.1016/j.aca.2018.02.018. PubMed DOI

Rodríguez-Ruiz I., Babenko V., Martínez-Rodríguez S. Protein separation under a microfluidic regime. Analyst. 2018;143:606–619. doi: 10.1039/C7AN01568B. PubMed DOI

Nge P.N., Pagaduan J.V., Yu M., Woolley A.T. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling. J. Chromatogr. A. 2012;1261:129–135. doi: 10.1016/j.chroma.2012.08.095. PubMed DOI PMC

Dziomba S., Araya-Farias M., Smadja C., Taverna M., Carbonnier B., Tran N.T. Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review. Anal. Chim. Acta. 2017;955:1–26. doi: 10.1016/j.aca.2016.12.017. PubMed DOI

Giddings J.C. Harnessing electrical forces for separation. Capillary zone electrophoresis, isoelectric focusing, field-flow fractionation, split-flow thin-cell continuous-separation and other techniques. J. Chromatogr. 1989;480:21–33. doi: 10.1016/S0021-9673(01)84277-1. PubMed DOI

Dolník V. Wall coating for capillary electrophoresis on microchips. Electrophoresis. 2004;25:3589–3601. doi: 10.1002/elps.200406113. PubMed DOI

Zhang Z., Yan B., Liao Y., Liu H. Nanoparticle: Is it promising in capillary electrophoresis? Anal. Bioanal. Chem. 2008;391:925–927. doi: 10.1007/s00216-008-1930-2. PubMed DOI

Wei Q., Becherer T., Angioletti-Uberti S., Dzubiella J., Wischke C., Neffe A.T., Lendlein A., Ballauff M., Haag R. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. 2014;53:8004–8031. doi: 10.1002/anie.201400546. PubMed DOI

Ouimet C.M., D’amico C.I., Kennedy R.T. Advances in capillary electrophoresis and the implications for drug discovery. Expert Opin. Drug Discov. 2017;12:213–224. doi: 10.1080/17460441.2017.1268121. PubMed DOI PMC

Hajba L., Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trac Trends Anal. Chem. 2017;90:38–44. doi: 10.1016/j.trac.2017.02.013. DOI

Sýkora D., Kasicka V., Miksík I., Rezanka P., Záruba K., Matejka P., Král V. Application of gold nanoparticles in separation sciences. J. Sep. Sci. 2010;33:372–387. doi: 10.1002/jssc.200900677. PubMed DOI

Tu Q., Wang J.-C., Zhang Y., Liu R., Liu W., Ren L., Shen S., Xu J., Zhao L., Wang J. Surface modification of poly (dimethylsiloxane) and its applications in microfluidics-based biological analysis. Rev. Anal. Chem. 2012;31:177–192. doi: 10.1515/revac-2012-0016. DOI

Zhou J., Khodakov D.A., Ellis A.V., Voelcker N.H. Surface modification for PDMS-based microfluidic devices. Electrophoresis. 2012;33:89–104. doi: 10.1002/elps.201100482. PubMed DOI

Breadmore M.C., Grochocki W., Kalsoom U., Alves M.N., Phung S.C., Rokh M.T., Cabot J.M., Ghiasvand A., Li F., Shallan A.I., et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018) Electrophoresis. 2019;40:17–39. doi: 10.1002/elps.201800384. PubMed DOI

Šlampová A., Malá Z., Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016–2018) Electrophoresis. 2019;40:40–54. doi: 10.1002/elps.201800261. PubMed DOI

Arvin N.E., Dawod M., Lamb D.T., Anderson J.P., Furtaw M.D., Kennedy R.T. Fast Immunoassay for Microfluidic Western Blotting by Direct Deposition of Reagents onto Capture Membrane. Anal. Methods Adv. Methods Appl. 2020;12:1606–1616. doi: 10.1039/D0AY00207K. PubMed DOI PMC

Jin S., Furtaw M.D., Chen H., Lamb D.T., Ferguson S.A., Arvin N.E., Dawod M., Kennedy R.T. Multiplexed Western Blotting Using Microchip Electrophoresis. Anal. Chem. 2016;88:6703–6710. doi: 10.1021/acs.analchem.6b00705. PubMed DOI PMC

Štěpánová S., Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J. Sep. Sci. 2017;40:228–250. doi: 10.1002/jssc.201600962. PubMed DOI

Giddings J.C. Field-Flow Fractionation. Chem. Eng. News Arch. 1988;66:34–45. doi: 10.1021/cen-v066n041.p034. DOI

Davanlou A., Reddy V. Numerical Simulation and Optimization of Electric Field-Based Sorting in Particle Laden Flows in Microchannels; Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting; Montreal, QC, Canada. 15–20 July 2018; p. V002T009A020.

Geissler D., Heiland J.J., Lotter C., Belder D. Microchip HPLC separations monitored simultaneously by coherent anti-Stokes Raman scattering and fluorescence detection. Microchim. Acta. 2017;184:315–321. doi: 10.1007/s00604-016-2012-3. DOI

Toraño J.S., Ramautar R., de Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B. 2019;1118:116–136. doi: 10.1016/j.jchromb.2019.04.020. PubMed DOI

Wagner M., Holzschuh S., Traeger A., Fahr A., Schubert U.S. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal. Chem. 2014;86:5201–5210. doi: 10.1021/ac501664t. PubMed DOI

Shendruk T.N., Tahvildari R., Catafard N.M., Andrzejewski L., Gigault C., Todd A., Gagne-Dumais L., Slater G.W., Godin M. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip. Anal. Chem. 2013;85:5981–5988. doi: 10.1021/ac400802g. PubMed DOI

Condina M.R., Dilmetz B.A., Bazaz S.R., Meneses J., Warkiani M.E., Hoffmann P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab Chip. 2019;19:1961–1970. doi: 10.1039/C9LC00152B. PubMed DOI

Stolz A., Jooß K. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis. 2019;40:79–112. doi: 10.1002/elps.201800331. PubMed DOI

Sierra T., Crevillen A.G., Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis. 2019;40:113–123. doi: 10.1002/elps.201800281. PubMed DOI

García-Carmona L., Martín A., Sierra T., González M.C., Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis. 2017;38:80–94. doi: 10.1002/elps.201600232. PubMed DOI

Martín A., Kim J., Kurniawan J.F., Sempionatto J.R., Moreto J.R., Tang G., Campbell A.S., Shin A., Lee M.Y., Liu X. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens. 2017;2:1860–1868. doi: 10.1021/acssensors.7b00729. PubMed DOI

Wang Y., Xu H., Luo J., Liu J., Wang L., Fan Y., Yan S., Yang Y., Cai X. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron. 2016;83:319–326. doi: 10.1016/j.bios.2016.04.062. PubMed DOI

Liang W., Lin H., Chen J., Chen C. Utilization of nanoparticles in microfluidic systems for optical detection. Microsyst. Technol. 2016;22:2363–2370. doi: 10.1007/s00542-016-2921-4. DOI

Gubatayao T.C., Handique K., Ganesan K., Drummond D.M. Scanning Real-Time Microfluidic Thermocycler and Methods for Synchronized Thermocycling and Scanning Optical Detection. US9765389B2. U.S. Patent. 2017 Sep 19;

Jeon S., Kwon Y.W., Park J.Y., Hong S.W. Fluorescent Detection of Bovine Serum Albumin Using Surface Imprinted Films Formed on PDMS Microfluidic Channels. J. Nanosci. Nanotechnol. 2019;19:4736–4739. doi: 10.1166/jnn.2019.16707. PubMed DOI

Burger R., Amato L., Boisen A. Detection methods for centrifugal microfluidic platforms. Biosens. Bioelectron. 2016;76:54–67. doi: 10.1016/j.bios.2015.06.075. PubMed DOI

Srinivas P.R. Electrophoretic Separation of Proteins. Springer; Berlin/Heidelberg, Germany: 2019. Introduction to Protein Electrophoresis; pp. 23–29.

Westermeier R. Looking at proteins from two dimensions: A review on five decades of 2D electrophoresis. Arch. Physiol. Biochem. 2014;120:168–172. doi: 10.3109/13813455.2014.945188. PubMed DOI

Righetti P.G., Candiano G. Recent advances in electrophoretic techniques for the characterization of protein biomolecules: A poker of aces. J. Chromatogr. A. 2011;1218:8727–8737. doi: 10.1016/j.chroma.2011.04.011. PubMed DOI

Fekete S., Guillarme D., Sandra P., Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal. Chem. 2016;88:480–507. doi: 10.1021/acs.analchem.5b04561. PubMed DOI

Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019) Electrophoresis. 2020;41:10–35. doi: 10.1002/elps.201900269. PubMed DOI

Štěpánová S., Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal. Chim. Acta. 2016;933:23–42. doi: 10.1016/j.aca.2016.06.006. PubMed DOI

Štěpánová S., Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015–mid 2018) J. Sep. Sci. 2019;42:398–414. doi: 10.1002/jssc.201801090. PubMed DOI

Catherman A.D., Skinner O.S., Kelleher N.L. Top down proteomics: Facts and perspectives. Biochem. Biophys. Res. Commun. 2014;445:683–693. doi: 10.1016/j.bbrc.2014.02.041. PubMed DOI PMC

Puangpila C., Mayadunne E., El Rassi Z. Liquid phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis—An update covering the period 2011–2014. Electrophoresis. 2015;36:238–252. doi: 10.1002/elps.201400434. PubMed DOI PMC

Giordano B.C., Burgi D.S., Hart S.J., Terray A. On-line sample pre-concentration in microfluidic devices: A review. Anal. Chim. Acta. 2012;718:11–24. doi: 10.1016/j.aca.2011.12.050. PubMed DOI

Gharari H., Farjaminezhad M., Marefat A., Fakhari A.R. All-in-one solid-phase microextraction: Development of a selective solid-phase microextraction fiber assembly for the simultaneous and efficient extraction of analytes with different polarities. J. Sep. Sci. 2016;39:1709–1716. doi: 10.1002/jssc.201501385. PubMed DOI

Bang Y., Hwang Y., Lee S., Park S., Bae S. Sol–gel-adsorbent-coated extraction needles to detect volatile compounds in spoiled fish. J. Sep. Sci. 2017;40:3839–3847. doi: 10.1002/jssc.201601373. PubMed DOI

Dawod M., Arvin N.E., Kennedy R.T. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst. 2017;142:1847–1866. doi: 10.1039/C7AN00198C. PubMed DOI PMC

Ríos Á., Zougagh M., Avila M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal. Chim. Acta. 2012;740:1–11. doi: 10.1016/j.aca.2012.06.024. PubMed DOI

Sonker M., Parker E.K., Nielsen A.V., Sahore V., Woolley A.T. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. Analyst. 2018;143:224–231. doi: 10.1039/C7AN01357D. PubMed DOI PMC

Noach-Hirsh M., Nevenzal H., Glick Y., Chorni E., Avrahami D., Barbiro-Michaely E., Gerber D., Tzur A. Integrated microfluidics for protein modification discovery. Mol. Cell. Proteom. 2015;14:2824–2832. doi: 10.1074/mcp.M115.053512. PubMed DOI PMC

Lazar I.M., Gulakowski N.S., Lazar A.C. Protein and proteome measurements with microfluidic chips. Anal. Chem. 2019;92:169–182. doi: 10.1021/acs.analchem.9b04711. PubMed DOI PMC

Fan B., Li X., Chen D., Peng H., Wang J., Chen J. Development of microfluidic systems enabling high-throughput single-cell protein characterization. Sensors. 2016;16:232. doi: 10.3390/s16020232. PubMed DOI PMC

Santos R.S., Figueiredo C., Azevedo N.F., Braeckmans K., De Smedt S.C. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv. Drug Deliv. Rev. 2018;136:28–48. doi: 10.1016/j.addr.2017.12.010. PubMed DOI

Kolarević S., Milovanović D., Avdović M., Oalđe M., Kostić J., Sunjog K., Nikolić B., Knežević-Vukčević J., Vuković-Gačić B. Optimisation of the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Bot. Serbica. 2016;40:29–36.

Al Nahas K., Cama J., Schaich M., Hammond K., Deshpande S., Dekker C., Ryadnov M., Keyser U. A microfluidic platform for the characterisation of membrane active antimicrobials. Lab Chip. 2019;19:837–844. doi: 10.1039/C8LC00932E. PubMed DOI PMC

Epand R.M., Walker C., Epand R.F., Magarvey N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta BBA Biomembr. 2016;1858:980–987. doi: 10.1016/j.bbamem.2015.10.018. PubMed DOI

Estemalik J., Demko C., Bissada N.F., Joshi N., Bodner D., Shankar E., Gupta S. Simultaneous Detection of Oral Pathogens in Subgingival Plaque and Prostatic Fluid of Men with Periodontal and Prostatic Diseases. J. Periodontol. 2017;88:823–829. doi: 10.1902/jop.2017.160477. PubMed DOI

Martínez M., Polizzotto A., Flores N., Semorile L., Maffía P.C. Antibacterial, anti-biofilm and in vivo activities of the antimicrobial peptides P5 and P6. 2. Microb. Pathog. 2020;139:103886. doi: 10.1016/j.micpath.2019.103886. PubMed DOI

Deshpande S., Caspi Y., Meijering A.E., Dekker C. Octanol-assisted liposome assembly on chip. Nat. Commun. 2016;7:1–9. doi: 10.1038/ncomms10447. PubMed DOI PMC

Yandrapalli N., Robinson T. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab Chip. 2019;19:626–633. doi: 10.1039/C8LC01275J. PubMed DOI

Prestinaci F., Pezzotti P., Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health. 2015;109:309–318. doi: 10.1179/2047773215Y.0000000030. PubMed DOI PMC

Ferri M., Ranucci E., Romagnoli P., Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017;57:2857–2876. doi: 10.1080/10408398.2015.1077192. PubMed DOI

Ayukekbong J.A., Ntemgwa M., Atabe A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control. 2017;6:47. doi: 10.1186/s13756-017-0208-x. PubMed DOI PMC

Marston H.D., Dixon D.M., Knisely J.M., Palmore T.N., Fauci A.S. Antimicrobial resistance. JAMA. 2016;316:1193–1204. doi: 10.1001/jama.2016.11764. PubMed DOI

Lee W.-B., Chien C.-C., You H.-L., Kuo F.-C., Lee M.S., Lee G.-B. An integrated microfluidic system for antimicrobial susceptibility testing with antibiotic combination. Lab Chip. 2019;19:2699–2708. doi: 10.1039/C9LC00585D. PubMed DOI

Périllaud-Dubois C., Pilmis B., Diep J., de Ponfilly G.P., Perreau S., d’Epenoux L.R., Mizrahi A., Couzigou C., Vidal B., Le Monnier A. Performance of rapid antimicrobial susceptibility testing by disk diffusion on MHR-SIR agar directly on urine specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:185–189. doi: 10.1007/s10096-018-3413-5. PubMed DOI

Stern E., Flentie K., Phelan N. Assays for Improving Automated Antimicrobial Susceptibility Testing Accuracy. Application No. PCT/US2020/041547. International Patent. 2021 Jan 14;

Liu Z., Banaei N., Ren K. Microfluidics for combating antimicrobial resistance. Trends Biotechnol. 2017;35:1129–1139. doi: 10.1016/j.tibtech.2017.07.008. PubMed DOI

Hassan S.-U., Zhang X. Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review. Curr. Anal. Chem. 2020;16:41–51. doi: 10.2174/1573411015666181224145845. DOI

Chiang Y.-L., Lin C.-H., Yen M.-Y., Su Y.-D., Chen S.-J., Chen H.-f. Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosens. Bioelectron. 2009;24:1905–1910. doi: 10.1016/j.bios.2008.09.020. PubMed DOI

Needs S.H., Donmez S.I., Bull S.P., McQuaid C., Osborn H.M.I., Edwards A.D. Challenges in Microfluidic and Point-of-Care Phenotypic Antimicrobial Resistance Tests. Front. Mech. Eng. 2020;6 doi: 10.3389/fmech.2020.00073. DOI

He C., Yin L., Tang C., Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials. 2013;34:2843–2854. doi: 10.1016/j.biomaterials.2013.01.033. PubMed DOI

Avesar J., Rosenfeld D., Truman-Rosentsvit M., Ben-Arye T., Geffen Y., Bercovici M., Levenberg S. Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proc. Natl. Acad. Sci. USA. 2017;114:E5787–E5795. doi: 10.1073/pnas.1703736114. PubMed DOI PMC

Lee W.-B., Fu C.-Y., Chang W.-H., You H.-L., Wang C.-H., Lee M.S., Lee G.-B. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens. Bioelectron. 2017;87:669–678. doi: 10.1016/j.bios.2016.09.008. PubMed DOI

Sun H., Chan C.-W., Wang Y., Yao X., Mu X., Lu X., Zhou J., Cai Z., Ren K. Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. Lab Chip. 2019;19:2915–2924. doi: 10.1039/C9LC00502A. PubMed DOI

Boedicker J.Q., Li L., Kline T.R., Ismagilov R.F. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip. 2008;8:1265–1272. doi: 10.1039/b804911d. PubMed DOI PMC

Mohan R., Mukherjee A., Sevgen S.E., Sanpitakseree C., Lee J., Schroeder C.M., Kenis P.J. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens. Bioelectron. 2013;49:118–125. doi: 10.1016/j.bios.2013.04.046. PubMed DOI

Schudel B.R., Choi C.J., Cunningham B.T., Kenis P.J. Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip. 2009;9:1676–1680. doi: 10.1039/b901999e. PubMed DOI

Sun H., Liu Z., Hu C., Ren K. Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility. Lab Chip. 2016;16:3130–3138. doi: 10.1039/C6LC00417B. PubMed DOI

Furlan C., Dirks R.A., Thomas P.C., Jones R.C., Wang J., Lynch M., Marks H., Vermeulen M. Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-09533-y. PubMed DOI PMC

Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., Feldman J.L., Perrimon N., Ting A.Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018;36:880–887. doi: 10.1038/nbt.4201. PubMed DOI PMC

Chen J.-X., Cipriani P.G., Mecenas D., Polanowska J., Piano F., Gunsalus K.C., Selbach M. In vivo interaction proteomics in Caenorhabditis elegans embryos provides new insights into P granule dynamics. Mol. Cell. Proteom. 2016;15:1642–1657. doi: 10.1074/mcp.M115.053975. PubMed DOI PMC

Lam S.S., Martell J.D., Kamer K.J., Deerinck T.J., Ellisman M.H., Mootha V.K., Ting A.Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods. 2015;12:51. doi: 10.1038/nmeth.3179. PubMed DOI PMC

Malovannaya A., Lanz R.B., Jung S.Y., Bulynko Y., Le N.T., Chan D.W., Ding C., Shi Y., Yucer N., Krenciute G. Analysis of the human endogenous coregulator complexome. Cell. 2011;145:787–799. doi: 10.1016/j.cell.2011.05.006. PubMed DOI PMC

Rolland T., Taşan M., Charloteaux B., Pevzner S.J., Zhong Q., Sahni N., Yi S., Lemmens I., Fontanillo C., Mosca R. A proteome-scale map of the human interactome network. Cell. 2014;159:1212–1226. doi: 10.1016/j.cell.2014.10.050. PubMed DOI PMC

Roux K.J., Kim D.I., Raida M., Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012;196:801–810. doi: 10.1083/jcb.201112098. PubMed DOI PMC

Smits A.H., Vermeulen M. Characterizing protein–protein interactions using mass spectrometry: Challenges and opportunities. Trends Biotechnol. 2016;34:825–834. doi: 10.1016/j.tibtech.2016.02.014. PubMed DOI

Swami M. A discovery strategy for novel cancer biomarkers. Nat. Rev. Cancer. 2010;10:597. doi: 10.1038/nrc2922. PubMed DOI

Hunyadi-Gulyás É., Medzihradszky K.F. Factors that contribute to the complexity of protein digests. Drug Discov. Today Targets. 2004;3:3–10. doi: 10.1016/S1741-8372(04)02415-6. DOI

Luk V.N., Fiddes L.K., Luk V.M., Kumacheva E., Wheeler A.R. Digital microfluidic hydrogel microreactors for proteomics. Proteomics. 2012;12:1310–1318. doi: 10.1002/pmic.201100608. PubMed DOI

Leipert J., Tholey A. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants. Lab Chip. 2019;19:3490–3498. doi: 10.1039/C9LC00715F. PubMed DOI

Yi L., Piehowski P.D., Shi T., Smith R.D., Qian W.J. Advances in microscale separations towards nanoproteomics applications. J. Chromatogr. A. 2017;1523:40–48. doi: 10.1016/j.chroma.2017.07.055. PubMed DOI PMC

Specht H., Slavov N. Transformative Opportunities for Single-Cell Proteomics. J. Proteome Res. 2018;17:2565–2571. doi: 10.1021/acs.jproteome.8b00257. PubMed DOI PMC

Kasuga K., Katoh Y., Nagase K., Igarashi K. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells. Proteomics. 2017;17 doi: 10.1002/pmic.201600420. PubMed DOI PMC

Liu W.-W., Zhu Y. “Development and application of analytical detection techniques for droplet-based microfluidics”—A Review. Anal. Chim. Acta. 2020 doi: 10.1016/j.aca.2020.03.011. PubMed DOI

Pang L., Ding J., Liu X.-X., Fan S.-K. Digital microfluidics for cell manipulation. TrAC Trends Anal. Chem. 2019 doi: 10.1016/j.trac.2019.06.008. DOI

Rackus D.G., de Campos R.P., Chan C., Karcz M.M., Seale B., Narahari T., Dixon C., Chamberlain M.D., Wheeler A.R. Pre-concentration by liquid intake by paper (P-CLIP): A new technique for large volumes and digital microfluidics. Lab Chip. 2017;17:2272–2280. doi: 10.1039/C7LC00440K. PubMed DOI PMC

Rahimi A., Mahdavi H. Zwitterionic-functionalized GO/PVDF nanocomposite membranes with improved anti-fouling properties. J. Water Process Eng. 2019;32:100960. doi: 10.1016/j.jwpe.2019.100960. DOI

Pedde R.D., Li H., Borchers C.H., Akbari M. Microfluidic-mass spectrometry interfaces for translational proteomics. Trends Biotechnol. 2017;35:954–970. doi: 10.1016/j.tibtech.2017.06.006. PubMed DOI

Lin L., Lin J.-M. Cell Analysis on Microfluidics. Springer; Berlin/Heidelberg, Germany: 2018. Microfluidics-Mass Spectrometry for Cell Analysis; pp. 291–311.

Reddy P.J., Gollapalli K., Ghantasala S., Das T., Patel S.K., Chanukuppa V., Srivastava S., Rapole S. Biomarker Discovery in the Developing World: Dissecting the Pipeline for Meeting the Challenges. Springer; Berlin/Heidelberg, Germany: 2016. Basics of Mass Spectrometry and Its Applications in Biomarker Discovery; pp. 41–63.

Abouleila Y., Onidani K., Ali A., Shoji H., Kawai T., Lim C.T., Kumar V., Okaya S., Kato K., Hiyama E. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci. 2019;110:697–706. doi: 10.1111/cas.13915. PubMed DOI PMC

Kim B., Araujo R., Howard M., Magni R., Liotta L.A., Luchini A. Affinity enrichment for mass spectrometry: Improving the yield of low abundance biomarkers. Expert Rev. Proteom. 2018;15:353–366. doi: 10.1080/14789450.2018.1450631. PubMed DOI PMC

El-Aneed A., Cohen A., Banoub J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009;44:210–230. doi: 10.1080/05704920902717872. DOI

Wang H., Chen L., Sun L. Digital microfluidics: A promising technique for biochemical applications. Front. Mech. Eng. 2017;12:510–525. doi: 10.1007/s11465-017-0460-z. DOI

Jie M., Mao S., Li H., Lin J.-M. Multi-channel microfluidic chip-mass spectrometry platform for cell analysis. Chin. Chem. Lett. 2017;28:1625–1630. doi: 10.1016/j.cclet.2017.05.024. DOI

Gao D., Jin F., Zhou M., Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst. 2019;144:766–781. doi: 10.1039/C8AN01186A. PubMed DOI

Shang L., Cheng Y., Zhao Y. Emerging droplet microfluidics. Chem. Rev. 2017;117:7964–8040. doi: 10.1021/acs.chemrev.6b00848. PubMed DOI

Cui P., Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019;9:238–247. doi: 10.1016/j.jpha.2018.12.001. PubMed DOI PMC

Týčová A., Ledvina V., Klepárník K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis. 2017;38:115–134. doi: 10.1002/elps.201600366. PubMed DOI

Hughes A.J., Lin R.K., Peehl D.M., Herr A.E. Microfluidic integration for automated targeted proteomic assays. Proc. Natl. Acad. Sci. USA. 2012;109:5972–5977. doi: 10.1073/pnas.1108617109. PubMed DOI PMC

Chen S., Sun Y., Neoh K.H., Chen A., Li W., Yang X., Han R.P.S. Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris. PLoS ONE. 2017;12:e0181249. doi: 10.1371/journal.pone.0181249. PubMed DOI PMC

Jones A.L., Dhanapala L., Baldo T.A., Sharafeldin M. Prostate Cancer Diagnosis in the Clinic Using an 8-Protein Biomarker Panel. Anal. Chem. 2021;93:1059–1067. doi: 10.1021/acs.analchem.0c04034. PubMed DOI

Bohr A., Colombo S., Jensen H. Microfluidics for Pharmaceutical Applications. Elsevier; Amsterdam, The Netherlands: 2019. Future of Microfluidics in Research and in the Market; pp. 425–465.

Du G., Fang Q., den Toonder J.M. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta. 2016;903:36–50. doi: 10.1016/j.aca.2015.11.023. PubMed DOI

Wang Y., Li Q., Shi H., Tang K., Qiao L., Yu G., Ding C., Yu S. Microfluidic Raman biochip detection of exosomes: A promising tool for prostate cancer diagnosis. Lab Chip. 2020;20:4632–4637. doi: 10.1039/D0LC00677G. PubMed DOI

Kang J.H., Park J.-K. Technical paper on microfluidic devices-cell separation technology. Asia Pac. Biotech News. 2005;9:1135–1146.

Chiu Y.-Y., Huang C.-K., Lu Y.-W. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing. Biomicrofluidics. 2016;10:011906. doi: 10.1063/1.4939944. PubMed DOI PMC

Menon N.V., Lim S.B., Lim C.T. Microfluidics for personalized drug screening of cancer. Curr. Opin. Pharmacol. 2019;48:155–161. doi: 10.1016/j.coph.2019.09.008. PubMed DOI

Kulasinghe A., Wu H., Punyadeera C., Warkiani M.E. The use of microfluidic technology for cancer applications and liquid biopsy. Micromachines. 2018;9:397. doi: 10.3390/mi9080397. PubMed DOI PMC

Pakjesm Pourfard P. Master’s Thesis. University of California Irvine; Irvine, CA, USA: 2017. Single Cell Enrichment with High Throughput Microfluidic Devices.

Zhu P., Wang L. Passive and active droplet generation with microfluidics: A review. Lab Chip. 2017;17:34–75. doi: 10.1039/C6LC01018K. PubMed DOI

Lei C., Kobayashi H., Wu Y., Li M., Isozaki A., Yasumoto A., Mikami H., Ito T., Nitta N., Sugimura T. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat. Protoc. 2018;13:1603–1631. doi: 10.1038/s41596-018-0008-7. PubMed DOI

Liu N., Petchakup C., Tay H.M., Li K.H.H., Hou H.W. Applications of Microfluidic Systems in Biology and Medicine. Springer; Berlin/Heidelberg, Germany: 2019. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications; pp. 99–150.

Su W., Li H., Chen W., Qin J. Microfluidic strategies for label-free exosomes isolation and analysis. TrAC Trends Anal. Chem. 2019 doi: 10.1016/j.trac.2019.06.037. DOI

Chagas C.L., Moreira R.C., Bressan L.P., de Jesus D.P., da Silva J.A., Coltro W.K. Capillary Electromigration Separation Methods. Elsevier; Amsterdam, The Netherlands: 2018. Instrumental Platforms for Capillary and Microchip Electromigration Separation Techniques; pp. 269–292.

Pamme N. Continuous flow separations in microfluidic devices. Lab Chip. 2007;7:1644–1659. doi: 10.1039/b712784g. PubMed DOI

Kielpinski M., Walther O., Cao J., Henkel T., Köhler J.M., Groß G.A. Microfluidic Chamber Design for Controlled Droplet Expansion and Coalescence. Micromachines. 2020;11:394. doi: 10.3390/mi11040394. PubMed DOI PMC

Wang J., Zhang N., Chen J., Rodgers V.G., Brisk P., Grover W.H. Finding the optimal design of a passive microfluidic mixer. Lab Chip. 2019;19:3618–3627. doi: 10.1039/C9LC00546C. PubMed DOI

Prakash J., Tripathi D. Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis. J. Mol. Liq. 2018;256:352–371. doi: 10.1016/j.molliq.2018.02.043. DOI

Ahmad I.L., Ahmad M.R., Takeuchi M., Nakajima M., Hasegawa Y. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle. IEEE Trans. Biomed. Circuits Syst. 2017;11:1413–1421. doi: 10.1109/TBCAS.2017.2764118. PubMed DOI

Ahmad I.L., Ahmad M.R. Tapered microchannel for multi-particles passive separation based on hydrodynamic resistance. Indones. J. Electr. Eng. Comput. Sci. 2017;5:628–635. doi: 10.11591/ijeecs.v5.i3.pp628-635. DOI

Voigt A., Schreiter J., Frank P., Pini C., Mayr C., Richter A. Method for the Computer-aided Schematic Design and Simulation of Hydrogel-based Microfluidic Systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019 doi: 10.1109/TCAD.2019.2925354. DOI

Naderi A., Bhattacharjee N., Folch A. Digital Manufacturing for Microfluidics. Annu. Rev. Biomed. Eng. 2019;21:325–364. doi: 10.1146/annurev-bioeng-092618-020341. PubMed DOI PMC

Sun J., Moore L., Xue W., Kim J., Zborowski M., Chalmers J.J. Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system. Biotechnol. Bioeng. 2018;115:1288–1300. doi: 10.1002/bit.26550. PubMed DOI PMC

Shamloo A., Boodaghi M. Design and simulation of a microfluidic device for acoustic cell separation. Ultrasonics. 2018;84:234–243. doi: 10.1016/j.ultras.2017.11.009. PubMed DOI

Hu Q., Luni C., Elvassore N. Microfluidics for secretome analysis under enhanced endogenous signaling. Biochem. Biophys. Res. Commun. 2018;497:480–484. doi: 10.1016/j.bbrc.2018.02.025. PubMed DOI

Liu F., KC P., Ni L., Zhang G., Zhe J. A microfluidic competitive immuno-aggregation assay for high sensitivity cell secretome detection. Organogenesis. 2018;14:67–81. doi: 10.1080/15476278.2018.1461306. PubMed DOI PMC

Xu X., Wang J., Wu L., Guo J., Song Y., Tian T., Wang W., Zhu Z., Yang C. Microfluidic Single-Cell Omics Analysis. Small. 2020;16:1903905. doi: 10.1002/smll.201903905. PubMed DOI

Caen O., Lu H., Nizard P., Taly V. Microfluidics as a strategic player to decipher single-cell omics? Trends Biotechnol. 2017;35:713–727. doi: 10.1016/j.tibtech.2017.05.004. PubMed DOI

Deng Y., Finck A., Fan R. Single-cell omics analyses enabled by microchip technologies. Annu. Rev. Biomed. Eng. 2019;21:365–393. doi: 10.1146/annurev-bioeng-060418-052538. PubMed DOI

Lazar I.M., Deng J., Stremler M.A., Ahuja S. Microfluidic reactors for advancing the MS analysis of fast biological responses. Microsyst. Nanoeng. 2019;5:1–16. doi: 10.1038/s41378-019-0048-3. PubMed DOI PMC

Bahrami S., Drabløs F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 2016;62:37–49. doi: 10.1016/j.jbior.2016.05.001. PubMed DOI

Fowler T., Sen R., Roy A.L. Regulation of primary response genes. Mol. Cell. 2011;44:348–360. doi: 10.1016/j.molcel.2011.09.014. PubMed DOI PMC

Dungan J., Mathews J., Levin M., Koomson V. Microfluidic platform to study intercellular connectivity through on-chip electrical impedance measurement; Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS); Medford, MA, USA. 6–9 August 2017; pp. 56–59.

Weiss A.C., Kempe K., Förster S., Caruso F. Microfluidic Examination of the “Hard” Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu. Biomacromolecules. 2018;19:2580–2594. doi: 10.1021/acs.biomac.8b00196. PubMed DOI

Digiacomo L., Palchetti S., Giulimondi F., Pozzi D., Chiozzi R.Z., Capriotti A.L., Laganà A., Caracciolo G. The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. Lab Chip. 2019;19:2557–2567. doi: 10.1039/C9LC00341J. PubMed DOI

Palchetti S., Colapicchioni V., Digiacomo L., Caracciolo G., Pozzi D., Capriotti A.L., La Barbera G., Laganà A. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta BBA Biomembr. 2016;1858:189–196. doi: 10.1016/j.bbamem.2015.11.012. PubMed DOI

Palchetti S., Pozzi D., Capriotti A.L., La Barbera G., Chiozzi R.Z., Digiacomo L., Peruzzi G., Caracciolo G., Laganà A. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids Surf. B Biointerfaces. 2017;153:263–271. doi: 10.1016/j.colsurfb.2017.02.037. PubMed DOI

Pozzi D., Caracciolo G., Digiacomo L., Colapicchioni V., Palchetti S., Capriotti A., Cavaliere C., Chiozzi R.Z., Puglisi A., Laganà A. The biomolecular corona of nanoparticles in circulating biological media. Nanoscale. 2015;7:13958–13966. doi: 10.1039/C5NR03701H. PubMed DOI

García-Álvarez R., Hadjidemetriou M., Sánchez-Iglesias A., Liz-Marzán L.M., Kostarelos K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale. 2018;10:1256–1264. doi: 10.1039/C7NR08322J. PubMed DOI

Tian W.-C., Finehout E. Microfluidics for Biological Applications. Springer; Berlin/Heidelberg, Germany: 2008. Current and Future Trends in Microfluidics within Biotechnology Research; pp. 385–411.

Scheler O., Postek W., Garstecki P. Recent developments of microfluidics as a tool for biotechnology and microbiology. Curr. Opin. Biotechnol. 2019;55:60–67. doi: 10.1016/j.copbio.2018.08.004. PubMed DOI

Ahmed I., Iqbal H.M., Akram Z. Microfluidics engineering: Recent trends, valorization, and applications. Arab. J. Sci. Eng. 2018;43:23–32. doi: 10.1007/s13369-017-2662-4. DOI

Wu H., Zhu J., Huang Y., Wu D., Sun J. Microfluidic-based single-cell study: Current status and future perspective. Molecules. 2018;23:2347. doi: 10.3390/molecules23092347. PubMed DOI PMC

Zhang Y., Wright M.A., Saar K.L., Challa P., Morgunov A.S., Peter Q.A.E., Devenish S., Dobson C.M., Knowles T.P.J. Machine learning aided top-down proteomics on a microfluidic platform. bioRxiv. 2020 doi: 10.1101/2020.11.14.381376. DOI

Riordon J., Sovilj D., Sanner S., Sinton D., Young E.W.K. Deep Learning with Microfluidics for Biotechnology. Trends Biotechnol. 2019;37:310–324. doi: 10.1016/j.tibtech.2018.08.005. PubMed DOI

Sarkar S., Kang W., Jiang S., Li K., Ray S., Luther E., Ivanov A.R., Fu Y., Konry T. Machine learning-aided quantification of antibody-based cancer immunotherapy by natural killer cells in microfluidic droplets. Lab Chip. 2020;20:2317–2327. doi: 10.1039/D0LC00158A. PubMed DOI PMC

Tsur E.E. Computer-Aided Design of Microfluidic Circuits. Annu. Rev. Biomed. Eng. 2020;22:285–307. doi: 10.1146/annurev-bioeng-082219-033358. PubMed DOI

Lamanna J., Scott E.Y., Edwards H.S., Chamberlain M.D., Dryden M.D.M. Digital microfluidic isolation of single cells for -Omics. Nat. Commun. 2020;11:5632. doi: 10.1038/s41467-020-19394-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...