Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

. 2015 Dec 10 ; 15 (12) : 31142-70. [epub] 20151210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26690442

Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called "organ-on-a-chip" technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.

Zobrazit více v PubMed

Langer R., Vacanti J.P. Tissue Engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529. PubMed DOI

Caplin J.D., Granados N.G., James M.R., Montazami R., Hashemi N. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 2015;4:1426–1450. doi: 10.1002/adhm.201500040. PubMed DOI

Esch E.W., Bahinski A., Huh D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015;14:248–260. doi: 10.1038/nrd4539. PubMed DOI PMC

Skommer J., Wlodkowic D. Successes and future outlook for microfluidics-based cardiovascular drug discovery. Exp. Opin. Drug Discov. 2015;10:231–244. doi: 10.1517/17460441.2015.1001736. PubMed DOI

Esteves-Villanueva J.O., Trzeciakiewicz H., Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst. 2014;139:2823–2831. doi: 10.1039/c4an00204k. PubMed DOI

Vistas C.R., Soares S.S., Rodrigues R.M.M., Chu V., Conde J.P., Ferreira G.N.M. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor. Analyst. 2014;139:3709–3713. doi: 10.1039/c4an00695j. PubMed DOI

Zhang M., Yin B.-C., Wang X.-F., Ye B.-C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem. Commun. 2011;47:2399–2401. doi: 10.1039/C0CC04887A. PubMed DOI

Das G., Chirumamilla M., Toma A., Gopalakrishnan A., Zaccaria R.P., Alabastri A., Leoncini M., Di Fabrizio E. Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 2013;3:1–6. doi: 10.1038/srep01792. PubMed DOI PMC

Xu J.J., Chen H.Y. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(p-phenylenediamine) at a platinum microdisk electrode. Anal. Biochem. 2000;280:221–226. PubMed

Mishra G.K., Sharma A., Deshpande K., Bhand S. Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor. Appl. Biochem. Biotechnol. 2014;174:998–1009. doi: 10.1007/s12010-014-0985-0. PubMed DOI

Javanmard M., Davis R.W. A microfluidic platform for electrical detection of DNA hybridization. Sens. Actuators B Chem. 2011;154:22–27. doi: 10.1016/j.snb.2010.03.067. PubMed DOI PMC

De-Carvalho J., Rodrigues R.M.M., Tomé B., Henriques S.F., Mira N.P., Sá-Correia I., Ferreira G.N.M. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model. Analyst. 2014;139:1847–1855. doi: 10.1039/C3AN01682J. PubMed DOI

Nguyen T.A., Yin T.-I., Reyes D., Urban G.A. A microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal. Chem. 2013;85:11068–11076. doi: 10.1021/ac402761s. PubMed DOI

Weltin A., Slotwinski K., Kieninger J., Moser I., Jobst G., Wego M., Ehret R., Urban G.A. Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem. Lab Chip. 2014;14:138–146. doi: 10.1039/C3LC50759A. PubMed DOI

Tian B., Liu J., Dvir T., Jin L., Tsui J.H., Qing Q., Suo Z., Langer R., Kohane D.S., Lieber C.M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012;11:986–994. doi: 10.1038/nmat3404. PubMed DOI PMC

Manz A., Harrison D.J., Verpoorte E.M.J., Fettinger J.C., Paulus A., Lüdi H., Widmer H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—Capillary electrophoresis on a chip. J. Chromatogr. A. 1992;593:253–258. doi: 10.1016/0021-9673(92)80293-4. DOI

Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442:368–373. doi: 10.1038/nature05058. PubMed DOI

Madadi H., Casals-Terré J., Mohammadi M. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing. Biofabrication. 2015;7:025007:1–025007:11. doi: 10.1088/1758-5090/7/2/025007. PubMed DOI

Lee L.M., Liu A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2014;5:040801:1–040801:6. doi: 10.1115/1.4029936. PubMed DOI PMC

Giobbe G.G., Michielin F., Luni C., Giulitti S., Martewicz S., Dupont S., Floreani A., Elvassore N. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods. 2015;12:637–640. doi: 10.1038/nmeth.3411. PubMed DOI

Vasiliauskas R., Liu D., Cito S., Zhang H., Shahbazi M.-A., Sikanen T., Mazutis L., Santos H.A. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl. Mater. Interfaces. 2015;7:14822–14832. doi: 10.1021/acsami.5b04824. PubMed DOI

Pullagurla S.R., Witek M.A., Jackson J.M., Lindell M.A.M., Hupert M.L., Nesterova I.V., Baird A.E., Soper S.A. Parallel affinity-based isolation of leukocyte subsets using microfluidics: Application for stroke diagnosis. Anal. Chem. 2014;86:4058–4065. doi: 10.1021/ac5007766. PubMed DOI PMC

Ho S.S.Y., Chua C., Gole L., Biswas A., Koay E., Choolani M. Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization. Prenat. Diagn. 2012;32:321–328. doi: 10.1002/pd.2946. PubMed DOI

De la Rica R., Stevens M.M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 2013;8:1759–1764. doi: 10.1038/nprot.2013.085. PubMed DOI

Stern E., Vacic A., Rajan N.K., Criscione J.M., Park J., Ilic B.R., Mooney D.J., Reed M.A., Fahmy T.M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010;5:138–142. doi: 10.1038/nnano.2009.353. PubMed DOI PMC

Andreou C., Hoonejani M.R., Barmi M.R., Moskovits M., Meinhart C.D. Rapid detection of drugs of abuse in saliva using surface enhanced raman spectroscopy and microfluidics. ACS Nano. 2013;7:7157–7164. doi: 10.1021/nn402563f. PubMed DOI

Zhu K.Y., Leung K.W., Ting A.K.L., Wong Z.C.F., Ng W.Y.Y., Choi R.C.Y., Dong T.T.X., Wang T., Lau D.T.W., Tsim K.W.K. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal. Chem. 2012;402:2805–2815. doi: 10.1007/s00216-012-5711-6. PubMed DOI

Swensen J.S., Xiao Y., Ferguson B.S., Lubin A.A., Lai R.Y., Heeger A.J., Plaxco K.W., Soh H.T. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 2009;131:4262–4266. doi: 10.1021/ja806531z. PubMed DOI PMC

Bell S.C., Hanes R.D. A microfluidic device for presumptive testing of controlled substances. J. Forensic Sci. 2007;52:884–888. doi: 10.1111/j.1556-4029.2007.00478.x. PubMed DOI

Wang J., Sun J., Song Y., Xu Y., Pan X., Sun Y., Li D. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence. Sensors. 2013;13:16075–16089. doi: 10.3390/s131216075. PubMed DOI PMC

Buffi N., Merulla D., Beutier J., Barbaud F., Beggah S., van Linte H., Renaud P., van der Meer J.R. Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device. Bioeng. Bugs. 2011;2:296–298. doi: 10.4161/bbug.2.5.17236. PubMed DOI

Duford D.A., Xi Y., Salin E.D. Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal. Chem. 2013;85:7834–7841. doi: 10.1021/ac401416w. PubMed DOI

Foudeh A.M., Brassard D., Tabrizian M., Veres T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip. 2015;15:1609–1618. doi: 10.1039/C4LC01468E. PubMed DOI

Charles P.T., Adams A.A., Deschamps J.R., Veitch S., Hanson A., Kusterbeck A.W. Detection of explosives in a dynamic marine environment using a moored TNT immunosensor. Sensors. 2014;14:4074–4085. doi: 10.3390/s140304074. PubMed DOI PMC

Tan H.Y., Loke W.K., Tan Y.T., Nguyen N.-T. A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip. 2008;8:885–891. doi: 10.1039/b800438b. PubMed DOI

De Santis R., Ciammaruconi A., Faggioni G., Fillo S., Gentile B., Di Giannatale E., Ancora M., Lista F. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiol. 2011;11:1–9. doi: 10.1186/1471-2180-11-60. PubMed DOI PMC

Dulay S.B., Gransee R., Julich S., Tomaso H., O’Sullivan C.K. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis. Biosens. Bioelectron. 2014;59:342–349. doi: 10.1016/j.bios.2014.03.024. PubMed DOI

Matatagui D., Fontecha J.L., Fernández M.J., Gràcia I., Cané C., Santos J.P., Horrillo M.C. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents. Sensors. 2014;14:12658–12669. doi: 10.3390/s140712658. PubMed DOI PMC

Shapiro M.S., Haswell S.J., Lye G.J., Bracewell D.G. Microfluidic chromatography for early stage evaluation of biopharmaceutical binding and separation conditions. Sep. Sci. Technol. 2011;46:185–194. doi: 10.1080/01496395.2010.511641. DOI

Chen D.L., Ismagilov R.F. Microfluidic cartridges preloaded with nanoliter plugs of reagents: An alternative to 96-well plates for screening. Curr. Opin. Chem. Biol. 2006;10:226–231. doi: 10.1016/j.cbpa.2006.04.004. PubMed DOI PMC

Zhang C., Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Res. 2007;35:4223–4237. doi: 10.1093/nar/gkm389. PubMed DOI PMC

Cao Q., Mahalanabis M., Chang J., Carey B., Hsieh C., Stanley A., Odell C.A., Mitchell P., Feldman J., Pollock N.R., et al. Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens. PLoS ONE. 2012;7:e33176. doi: 10.1371/journal.pone.0033176. PubMed DOI PMC

Schell W.A., Benton J.L., Smith P.B., Poore M., Rouse J.L., Boles D.J., Johnson M.D., Alexander B.D., Pamula V.K., Eckhardt A.E., et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:2237–2245. doi: 10.1007/s10096-012-1561-6. PubMed DOI PMC

Ishii S., Segawa T., Okabe S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl. Environ. Microbiol. 2013;79:2891–2898. doi: 10.1128/AEM.00205-13. PubMed DOI PMC

Spurgeon S.L., Jones R.C., Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE. 2008;3:e1662. doi: 10.1371/journal.pone.0001662. PubMed DOI PMC

Chen Y., Zhong J.F. Microfluidic devices for high-throughput gene expression profiling of single hESC-derived neural stem cells. Methods Mol. Biol. 2008;438:293–303. PubMed

May-Panloup P., Ferre-L’Hotellier V., Moriniere C., Marcaillou C., Lemerle S., Malinge M.-C., Coutolleau A., Lucas N., Reynier P., Descamps P., et al. Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum. Reprod. 2012;27:829–843. doi: 10.1093/humrep/der431. PubMed DOI

Shaw K.J., Hughes E.M., Dyer C.E., Greenman J., Haswell S.J. Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device. Lab. Investig. 2013;93:961–966. doi: 10.1038/labinvest.2013.76. PubMed DOI

Mellors J.S., Gorbounov V., Ramsey R.S., Ramsey J.M. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. 2008;80:6881–6887. doi: 10.1021/ac800428w. PubMed DOI PMC

Focke M., Mark D., Stumpf F., Müller M., Roth G., Zengerle R., von Stetten F. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments. In: Schmid U., Sánchez-Rojas J.L., Leester-Schaedel M., editors. Proceedings of the SPIE, Smart Sensors, Actuators, and MEMS V; Prague, Czech Republic. 18–20 April 2011;

Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007;46:1318–1320. doi: 10.1002/anie.200603817. PubMed DOI PMC

Martinez A.W., Phillips S.T., Whitesides G.M., Carrilho E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010;82:3–10. doi: 10.1021/ac9013989. PubMed DOI

Mukhopadhyay R. When microfluidic devices go bad. Anal. Chem. 2005;77:429A–432A. doi: 10.1021/ac053496h. PubMed DOI

Zhou J., Khodakov D.A., Ellis A.V., Voelcker N.H. Surface modification for PDMS-based microfluidic devices. Electrophoresis. 2012;33:89–104. doi: 10.1002/elps.201100482. PubMed DOI

Barbulovic-Nad I., Wheeler A.R. Encyclopedia of Microfluidics and Nanofluidics. Springer; Berlin, Germany: 2008. Cell Assays in Microfluidics; pp. 209–216.

Xiong B., Ren K., Shu Y., Chen Y., Shen B., Wu H. Recent developments in microfluidics for cell studies. Adv. Mater. 2014;26:5525–5532. doi: 10.1002/adma.201305348. PubMed DOI

Borenstein J.T., Vunjak-Novakovic G. Engineering tissue with BioMEMS. IEEE Pulse. 2011;2:28–34. doi: 10.1109/MPUL.2011.942764. PubMed DOI PMC

Tourovskaia A., Fauver M., Kramer G., Simonson S., Neumann T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol. Med. 2014;239:1264–1271. doi: 10.1177/1535370214539228. PubMed DOI PMC

Theberge A.B., Yu J., Young E.W.K., Ricke W.A., Bushman W., Beebe D.J. Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis. Anal. Chem. 2015;87:3239–3246. doi: 10.1021/ac503700f. PubMed DOI PMC

Guo Q., Duffy S.P., Matthews K., Santoso A.T., Scott M.D., Ma H. Microfluidic analysis of red blood cell deformability. J. Biomech. 2014;47:1767–1776. doi: 10.1016/j.jbiomech.2014.03.038. PubMed DOI

Grosberg A., Alford P.W., McCain M.L., Parker K.K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip. 2011;11:4165–4173. doi: 10.1039/c1lc20557a. PubMed DOI PMC

Yeom E., Kang Y.J., Lee S. Changes in velocity profile according to blood viscosity in a microchannel. Biomicrofluidics. 2014;8:034110:1–034110:11. doi: 10.1063/1.4883275. PubMed DOI PMC

Yeom E., Jun Kang Y., Joon Lee S. Hybrid system for ex vivo hemorheological and hemodynamic analysis: A feasibility study. Sci. Rep. 2015;5:1–15. doi: 10.1038/srep11064. PubMed DOI PMC

Tomaiuolo G., Lanotte L., D’Apolito R., Cassinese A., Guido S. Microconfined flow behavior of red blood cells. Med. Eng. Phys. 2015 doi: 10.1016/j.medengphy.2015.05.007. PubMed DOI

Li L., Lv X., Ostrovidov S., Shi X., Zhang N., Liu J. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. Mol. Pharm. 2014;11:2009–2015. doi: 10.1021/mp5000532. PubMed DOI

McCain M.L., Sheehy S.P., Grosberg A., Goss J.A., Parker K.K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. USA. 2013;110:9770–9775. doi: 10.1073/pnas.1304913110. PubMed DOI PMC

Giridharan G.A., Nguyen M.-D., Estrada R., Parichehreh V., Hamid T., Ismahil M.A., Prabhu S.D., Sethu P. Microfluidic cardiac cell culture model (μCCCM) Anal. Chem. 2010;82:7581–7587. doi: 10.1021/ac1012893. PubMed DOI

Yasotharan S., Pinto S., Sled J.G., Bolz S.-S., Günther A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip. 2015;15:2660–2669. doi: 10.1039/C5LC00021A. PubMed DOI

Ryu H., Oh S., Lee H.J., Lee J.Y., Lee H.K., Jeon N.L. Engineering a blood vessel network module for body-on-a-chip applications. J. Lab. Autom. 2015;20:296–301. doi: 10.1177/2211068214562831. PubMed DOI

Hattori K., Munehira Y., Kobayashi H., Satoh T., Sugiura S., Kanamori T. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. J. Biosci. Bioeng. 2014;118:327–332. doi: 10.1016/j.jbiosc.2014.02.006. PubMed DOI

Hald E.S., Steucke K.E., Reeves J.A., Win Z., Alford P.W. Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication. 2014;6:045005:1–045005:11. doi: 10.1088/1758-5082/6/4/045005. PubMed DOI

Dominical V.M., Vital D.M., O’Dowd F., Saad S.T.O., Costa F.F., Conran N. In vitro microfluidic model for the study of vaso-occlusive processes. Exp. Hematol. 2015;43:223–228. doi: 10.1016/j.exphem.2014.10.015. PubMed DOI

Harris D.G., Benipal P.K., Cheng X., Burdorf L., Azimzadeh A.M., Pierson R.N. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: Development and application to xenotransplantation. PLoS ONE. 2015;10:e0123015. doi: 10.1371/journal.pone.0123015. PubMed DOI PMC

Hu R., Li F., Lv J., He Y., Lu D., Yamada T., Ono N. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels. Biomed. Microdevices. 2015;17:1387–2176. doi: 10.1007/s10544-015-9959-4. PubMed DOI

Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668. doi: 10.1126/science.1188302. PubMed DOI PMC

Bol L., Galas J.-C., Hillaireau H., Potier I.L., Nicolas V., Haghiri-Gosnet A.-M., Fattal E., Taverna M. A microdevice for parallelized pulmonary permeability studies. Biomed. Microdevices. 2014;16:277–285. doi: 10.1007/s10544-013-9831-3. PubMed DOI

Kao Y.-C., Hsieh M.-H., Liu C.-C., Pan H.-J., Liao W.-Y., Cheng J.-Y., Kuo P.-L., Lee C.-H. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device. Biomicrofluidics. 2014;8:024107:1–024107:12. doi: 10.1063/1.4870401. PubMed DOI PMC

Sellgren K.L., Butala E.J., Gilmour B.P., Randell S.H., Grego S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip. 2014;14:3349–3358. doi: 10.1039/C4LC00552J. PubMed DOI

Ling T.-Y., Liu Y.-L., Huang Y.-K., Gu S.-Y., Chen H.-K., Ho C.-C., Tsao P.-N., Tung Y.-C., Chen H.-W., Cheng C.-H., et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold. Biomaterials. 2014;35:5660–5669. doi: 10.1016/j.biomaterials.2014.03.074. PubMed DOI

Punde T.H., Wu W.-H., Lien P.-C., Chang Y.-L., Kuo P.-H., Chang M.D.-T., Lee K.-Y., Huang C.-D., Kuo H.-P., Chan Y.-F., et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr. Biol. 2015;7:162–169. doi: 10.1039/C4IB00239C. PubMed DOI

Wu J., Hillier C., Komenda P., Lobato de Faria R., Levin D., Zhang M., Lin F. A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients. PLoS ONE. 2015;10:e0126523. doi: 10.1371/journal.pone.0126523. PubMed DOI PMC

Cortez-Jugo C., Qi A., Rajapaksa A., Friend J.R., Yeo L.Y. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics. 2015;9:1–10. doi: 10.1063/1.4917181. PubMed DOI PMC

Rochow N., Manan A., Wu W.-I., Fusch G., Monkman S., Leung J., Chan E., Nagpal D., Predescu D., Brash J., et al. An integrated array of microfluidic oxygenators as a neonatal lung assist device: In vitro characterization and in vivo demonstration. Artif. Organs. 2014;38:856–866. doi: 10.1111/aor.12269. PubMed DOI

Li E., Xu Z., Liu F., Wang H., Wen J., Shao S., Zhang L., Wang L., Liu C., Lu J., et al. Continual exposure to cigarette smoke extracts induces tumor-Like transformation of human nontumor bronchial epithelial cells in a microfluidic chip. J. Thorac. Oncol. 2014;9:1091–1100. doi: 10.1097/JTO.0000000000000219. PubMed DOI

Felder M., Stucki A.O., Stucki J.D., Geiser T., Guenat O.T. The potential of microfluidic lung epithelial wounding: Towards in vivo-like alveolar microinjuries. Integr. Biol. 2014;6:1132–1140. doi: 10.1039/C4IB00149D. PubMed DOI

Eleftheriadou I., Trabalza A., Ellison S.M., Gharun K., Mazarakis N.D. Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol. Ther. 2014;22:1285–1298. doi: 10.1038/mt.2014.49. PubMed DOI PMC

Neumann S., Campbell G.E., Szpankowski L., Goldstein L.S.B., Encalada S.E. Characterizing the composition of molecular motors on moving axonal cargo using “cargo mapping” analysis. J. Vis. Exp. 2014:1–2. doi: 10.3791/52029. PubMed DOI PMC

Wang T., Martin S., Papadopulos A., Harper C.B., Mavlyutov T.A., Niranjan D., Glass N.R., Cooper-White J.J., Sibarita J.-B., Choquet D., et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J. Neurosci. 2015;35:6179–6194. doi: 10.1523/JNEUROSCI.3757-14.2015. PubMed DOI PMC

Zhao X., Zhou Y., Weissmiller A.M., Pearn M.L., Mobley W.C., Wu C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J. Vis. Exp. 2014;91:e51899. doi: 10.3791/51899. PubMed DOI PMC

Robertson G., Bushell T.J., Zagnoni M. Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr. Biol. 2014;6:636–644. doi: 10.1039/c3ib40221e. PubMed DOI

Xu H., Ferreira M.M., Heilshorn S.C. Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab Chip. 2014;14:2047–2056. doi: 10.1039/C4LC00162A. PubMed DOI PMC

An Q., Fillmore H.L., Vouri M., Pilkington G.J. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro. Oncol. 2014;16:265–273. doi: 10.1093/neuonc/not202. PubMed DOI PMC

Pollen A.A., Nowakowski T.J., Shuga J., Wang X., Leyrat A.A., Lui J.H., Li N., Szpankowski L., Fowler B., Chen P., et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 2014;32:1053–1058. doi: 10.1038/nbt.2967. PubMed DOI PMC

Kerman B.E., Kim H.J., Padmanabhan K., Mei A., Georges S., Joens M.S., Fitzpatrick J.A.J., Jappelli R., Chandross K.J., August P., et al. In vitro myelin formation using embryonic stem cells. Development. 2015;142:2213–2225. doi: 10.1242/dev.116517. PubMed DOI PMC

Nery F.C., da Hora C.C., Yaqub U., Zhang X., McCarthy D.M., Bhide P.G., Irimia D., Breakefield X.O. New methods for investigation of neuronal migration in embryonic brain explants. J. Neurosci. Methods. 2015;239:80–84. doi: 10.1016/j.jneumeth.2014.09.028. PubMed DOI PMC

Wu K.-Y., He M., Hou Q.-Q., Sheng A.-L., Yuan L., Liu F., Liu W.-W., Li G., Jiang X.-Y., Luo Z.-G. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci. Signal. 2014;7:1–13. doi: 10.1126/scisignal.2005334. PubMed DOI PMC

Rajbhandari L., Tegenge M.A., Shrestha S., Ganesh Kumar N., Malik A., Mithal A., Hosmane S., Venkatesan A. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia. 2014;62:1982–1991. doi: 10.1002/glia.22719. PubMed DOI

Fournier A.J., Rajbhandari L., Shrestha S., Venkatesan A., Ramesh K.T. In vitro and in situ visualization of cytoskeletal deformation under load: Traumatic axonal injury. FASEB J. 2014;28:5277–5287. doi: 10.1096/fj.14-251942. PubMed DOI

Brown J.A., Sherrod S.D., Goodwin C.R., Brewer B., Yang L., Garbett K.A., Li D., McLean J.A., Wikswo J.P., Mirnics K. Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia. J. Neuroinflamm. 2014;11:1–12. doi: 10.1186/s12974-014-0183-6. PubMed DOI PMC

Sun M., Kaplan S.V., Gehringer R.C., Limbocker R.A., Johnson M.A. Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal. Chem. 2014;86:4151–4156. doi: 10.1021/ac5008927. PubMed DOI PMC

Lin X., Wang S., Yu X., Liu Z., Wang F., Li W.T., Cheng S.H., Dai Q., Shi P. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip. 2015;15:680–689. doi: 10.1039/C4LC01186D. PubMed DOI

Ruiz A., Joshi P., Mastrangelo R., Francolini M., Verderio C., Matteoli M. Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip. 2014;14:2860–2866. doi: 10.1039/c4lc00174e. PubMed DOI

Booth R., Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Ann. Biomed. Eng. 2014;42:2379–2391. doi: 10.1007/s10439-014-1086-5. PubMed DOI

Zhao Y., Abdelfattah A.S., Zhao Y., Ruangkittisakul A., Ballanyi K., Campbell R.E., Harrison D.J. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr. Biol. 2014;6:714–725. doi: 10.1039/c4ib00039k. PubMed DOI

Coquinco A., Kojic L., Wen W., Wang Y.T., Jeon N.L., Milnerwood A.J., Cynader M. A microfluidic based in vitro model of synaptic competition. Mol. Cell. Neurosci. 2014;60:43–52. doi: 10.1016/j.mcn.2014.03.001. PubMed DOI

Deleglise B., Magnifico S., Duplus E., Vaur P., Soubeyre V., Belle M., Vignes M., Viovy J.-L., Jacotot E., Peyrin J.-M., et al. B-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol. Commun. 2014;2:1–9. doi: 10.1186/s40478-014-0145-3. PubMed DOI PMC

Zhu L., Xu M., Yang M., Yang Y., Li Y., Deng J., Ruan L., Liu J., Du S., Liu X., et al. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel -structure and induces TDP-43 redistribution. Hum. Mol. Genet. 2014;23:6863–6877. doi: 10.1093/hmg/ddu409. PubMed DOI PMC

Chang T.C., Mikheev A.M., Huynh W., Monnat R.J., Rostomily R.C., Folch A. Parallel microfluidic chemosensitivity testing on individual slice cultures. Lab Chip. 2014;14:4540–4551. doi: 10.1039/C4LC00642A. PubMed DOI PMC

Mu X., Zheng W., Xiao L., Zhang W., Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip. 2013;13:1612–1618. doi: 10.1039/c3lc41342j. PubMed DOI

Baudoin R., Alberto G., Legendre A., Paullier P., Naudot M., Fleury M.J., Jacques S., Griscom L., Leclerc E. Investigation of expression and activity levels of primary rat hepatocyte detoxication genes under various flow rates and cell densities in microfluidic biochips. Biotechnol. Prog. 2014;30:401–410. doi: 10.1002/btpr.1857. PubMed DOI

Lee P.J., Hung P.J., Lee L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 2007;97:1340–1346. doi: 10.1002/bit.21360. PubMed DOI

Silva P.N., Green B.J., Altamentova S.M., Rocheleau J.V. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip. 2013;13:4374–4384. doi: 10.1039/c3lc50680k. PubMed DOI

Jun Y., Kim M.J., Hwang Y.H., Jeon E.A., Kang A.R., Lee S.-H., Lee D.Y. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials. 2013;34:8122–8130. doi: 10.1016/j.biomaterials.2013.07.079. PubMed DOI

Lee D., Wang Y., Mendoza-Elias J.E., Adewola A.F., Harvat T.A., Kinzer K., Gutierrez D., Qi M., Eddington D.T., Oberholzer J. Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging. Biomed. Microdevices. 2012;14:7–16. doi: 10.1007/s10544-011-9580-0. PubMed DOI PMC

Zhang M.Y., Lee P.J., Hung P.J., Johnson T., Lee L.P., Mofrad M.R.K. Microfluidic environment for high density hepatocyte culture. Biomed. Microdevices. 2008;10:117–121. doi: 10.1007/s10544-007-9116-9. PubMed DOI

Baudoin R., Griscom L., Prot J.M., Legallais C., Leclerc E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 2011;53:172–181. doi: 10.1016/j.bej.2010.10.007. DOI

Illa X., Vila S., Yeste J., Peralta C., Gracia-Sancho J., Villa R. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLoS ONE. 2014;9:e111864. doi: 10.1371/journal.pone.0111864. PubMed DOI PMC

Li C.Y., Stevens K.R., Schwartz R.E., Alejandro B.S., Huang J.H., Bhatia S.N. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A. 2014;20:2200–2212. doi: 10.1089/ten.tea.2013.0667. PubMed DOI PMC

Khetani S.R., Bhatia S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 2008;26:120–126. doi: 10.1038/nbt1361. PubMed DOI

Domansky K., Inman W., Serdy J., Dash A., Lim M.H.M., Griffith L.G. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 2010;10:51–58. doi: 10.1039/B913221J. PubMed DOI PMC

Jang K.-J., Suh K.-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10:36–42. doi: 10.1039/B907515A. PubMed DOI

Ju X., Li D., Gao N., Shi Q., Hou H. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Biotechnol. J. 2008;3:383–391. doi: 10.1002/biot.200700152. PubMed DOI

Huang H.-C., Chang Y.-J., Chen W.-C., Harn H.I.-C., Tang M.-J., Wu C.-C. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng. Part A. 2013;19:2024–2034. doi: 10.1089/ten.tea.2012.0605. PubMed DOI PMC

Ghazalli N., Mahdavi A., Feng T., Jin L., Kozlowski M.T., Hsu J., Riggs A.D., Tirrell D.A., Ku H.T. Postnatal pancreas of mice contains tripotent progenitors capable of giving rise to duct, acinar, and endocrine cells in vitro. Stem Cells Dev. 2015 doi: 10.1089/scd.2015.0007. PubMed DOI PMC

Sheng W., Ogunwobi O.O., Chen T., Zhang J., George T.J., Liu C., Fan Z.H. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014;14:89–98. doi: 10.1039/C3LC51017D. PubMed DOI PMC

Thege F.I., Lannin T.B., Saha T.N., Tsai S., Kochman M.L., Hollingsworth M.A., Rhim A.D., Kirby B.J. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: Characterization, optimization and downstream analysis. Lab Chip. 2014;14:1775–1784. doi: 10.1039/C4LC00041B. PubMed DOI

Rhim A.D., Thege F.I., Santana S.M., Lannin T.B., Saha T.N., Tsai S., Maggs L.R., Kochman M.L., Ginsberg G.G., Lieb J.G., et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146:647–651. doi: 10.1053/j.gastro.2013.12.007. PubMed DOI PMC

Kim H.J., Ingber D.E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 2013;5:1130–1140. doi: 10.1039/c3ib40126j. PubMed DOI

Esch M.B., Sung J.H., Yang J., Yu C., Yu J., March J.C., Shuler M.L. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomed. Microdevices. 2012;14:895–906. doi: 10.1007/s10544-012-9669-0. PubMed DOI

Kim S.H., Lee J.W., Choi I., Kim Y.C., Lee J.B., Sung J.H. A microfluidic device with 3D hydrogel villi scaffold to simulate intestinal absorption. J. Nanosci. Nanotechnol. 2013;13:7220–7228. doi: 10.1166/jnn.2013.8088. PubMed DOI

Legendre A., Baudoin R., Alberto G., Paullier P., Naudot M., Bricks T., Brocheton J., Jacques S., Cotton J., Leclerc E. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J. Pharm. Sci. 2013;102:3264–3276. doi: 10.1002/jps.23466. PubMed DOI

Kimura H., Yamamoto T., Sakai H., Sakai Y., Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8:741–746. doi: 10.1039/b717091b. PubMed DOI

Pasirayi G., Scott S.M., Islam M., O’Hare L., Bateson S., Ali Z. Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay. Talanta. 2014;129:491–498. doi: 10.1016/j.talanta.2014.06.020. PubMed DOI

Chang R., Emami K., Wu H., Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2:1–11. doi: 10.1088/1758-5082/2/4/045004. PubMed DOI

Chang R.C., Emami K., Jeevarajan A., Wu H., Sun W. Microprinting of liver micro-organ for drug metabolism study. Methods Mol. Biol. 2011;671:219–238. PubMed

Ramadan Q., Jafarpoorchekab H., Huang C., Silacci P., Carrara S., Koklü G., Ghaye J., Ramsden J., Ruffert C., Vergeres G., et al. NutriChip: Nutrition analysis meets microfluidics. Lab Chip. 2013;13:196–203. doi: 10.1039/C2LC40845G. PubMed DOI

Snouber L.C., Bunescu A., Naudot M., Legallais C., Brochot C., Dumas M.E., Elena-Herrmann B., Leclerc E. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol. Sci. 2013;132:8–20. doi: 10.1093/toxsci/kfs230. PubMed DOI

Dhumpa R., Truong T.M., Wang X., Roper M.G. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Integr. Biol. 2015;7:1061–1067. doi: 10.1039/C5IB00156K. PubMed DOI PMC

Lomasney A.R., Yi L., Roper M.G. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of langerhans on a microfluidic device. Anal. Chem. 2013;85:7919–7925. doi: 10.1021/ac401625g. PubMed DOI PMC

Lo J.F., Wang Y., Blake A., Yu G., Harvat T.A., Jeon H., Oberholzer J., Eddington D.T. Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal. Chem. 2012;84:1987–1993. doi: 10.1021/ac2030909. PubMed DOI PMC

Ferrell N., Ricci K.B., Groszek J., Marmerstein J.T., Fissell W.H. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol. Bioeng. 2012;109:797–803. doi: 10.1002/bit.24339. PubMed DOI PMC

McAuliffe G.J., Chang J.Y., Glahn R.P., Shuler M.L. Development of a gastrointestinal tract microscale cell culture analog to predict drug transport. Mol. Celullar Biomech. 2008;5:119–132. PubMed

Nourmohammadzadeh M., Lo J.F., Bochenek M., Mendoza-Elias J.E., Wang Q., Li Z., Zeng L., Qi M., Eddington D.T., Oberholzer J., et al. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: Effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal. Chem. 2013;85:11240–11249. doi: 10.1021/ac401297v. PubMed DOI PMC

Bricks T., Paullier P., Legendre A., Fleury M.J., Zeller P., Merlier F., Anton P.M., Leclerc E. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. Vitr. 2014;28:885–895. doi: 10.1016/j.tiv.2014.02.005. PubMed DOI

Kimura H., Ikeda T., Nakayama H., Sakai Y., Fujii T. An on-chip small intestine-liver model for pharmacokinetic studies. J. Lab. Autom. 2015;20:265–273. doi: 10.1177/2211068214557812. PubMed DOI

Matharu Z., Patel D., Gao Y., Haque A., Zhou Q., Revzin A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 2014;86:8865–8872. doi: 10.1021/ac502383e. PubMed DOI PMC

Zilberman Y., Sonkusale S.R. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens. Bioelectron. 2015;67:465–471. doi: 10.1016/j.bios.2014.09.006. PubMed DOI

Das R., Murphy R.G., Seibel E.J. Beyond isolated cells: Microfluidic transport of large tissue for pancreatic cancer diagnosis. Proc. SPIE. 2015;9320:1–29. PubMed PMC

Leonard E.F. Technical approaches toward ambulatory ESRD therapy. Seminars Dial. 2009;22:658–660. doi: 10.1111/j.1525-139X.2009.00660.x. PubMed DOI

Leonard E.F., Cortell S., Jones J. The path to wearable ultrafiltration and dialysis devices. Blood Purification. 2011;31:92–95. doi: 10.1159/000321846. PubMed DOI PMC

Kim H.J., Huh D., Hamilton G., Ingber D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–2174. doi: 10.1039/c2lc40074j. PubMed DOI

Huh D., Kim H.J., Fraser J.P., Shea D.E., Khan M., Bahinski A., Hamilton G.A., Ingber D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 2013;8:2135–2157. doi: 10.1038/nprot.2013.137. PubMed DOI

Legendre A., Jacques S., Dumont F., Cotton J., Paullier P., Fleury M.J., Leclerc E. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol. Vitr. 2014;28:1075–1087. doi: 10.1016/j.tiv.2014.04.008. PubMed DOI

Leclerc E., Hamon J., Claude I., Jellali R., Naudot M., Bois F. Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion. Cell Biol. Toxicol. 2015;31:173–185. doi: 10.1007/s10565-015-9302-0. PubMed DOI

Snouber L.C., Jacques S., Monge M., Legallais C., Leclerc E. Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips. Genomics. 2012;100:27–34. doi: 10.1016/j.ygeno.2012.05.001. PubMed DOI

Snouber L.C., Letourneur F., Chafey P., Broussard C., Monge M., Legallais C., Leclerc E. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol. Prog. 2011;28:474–484. doi: 10.1002/btpr.743. PubMed DOI

Snouber L.C., Aninat C., Grsicom L., Madalinski G., Brochot C., Poleni P.E., Razan F., Guillouzo C.G., Legallais C., Corlu A., et al. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol. Bioeng. 2013;110:597–608. doi: 10.1002/bit.24707. PubMed DOI

Mahler G.J., Esch M.B., Glahn R.P., Shuler M.L. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 2009;104:193–205. doi: 10.1002/bit.22366. PubMed DOI

Leclerc E., Hamon J., Legendre A., Bois F.Y. Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicol. Vitr. 2014;28:1230–1241. doi: 10.1016/j.tiv.2014.05.003. PubMed DOI

Jang K.-J., Mehr A.P., Hamilton G.A., McPartlin L.A., Chung S., Suh K.-Y., Ingber D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013;5:1119–1129. doi: 10.1039/c3ib40049b. PubMed DOI

Lang J.D., Berry S.M., Powers G.L., Beebe D.J., Alarid E.T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 2013;5:807–816. doi: 10.1039/c3ib20265h. PubMed DOI PMC

Kim B.J., Hannanta-anan P., Chau M., Kim Y.S., Swartz M.A., Wu M. Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE. 2013;8:e68422. doi: 10.1371/journal.pone.0068422. PubMed DOI PMC

Huang H.-Y., Wu T.-L., Huang H.-R., Li C.-J., Fu H.-T., Soong Y.-K., Lee M.-Y., Yao D.-J. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J. Lab. Autom. 2014;19:91–99. doi: 10.1177/2211068213486650. PubMed DOI

Tung C., Hu L., Fiore A.G., Ardon F., Hickman D.G., Gilbert R.O., Suarez S.S., Wu M. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc. Natl. Acad. Sci. USA. 2015;112:5431–5436. doi: 10.1073/pnas.1500541112. PubMed DOI PMC

Ferrie A.M., Wang C., Deng H., Fang Y. A label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrenergic receptor. Integr. Biol. 2013;5:1253–1261. doi: 10.1039/c3ib40112j. PubMed DOI

Ges I.A., Brindley R.L., Currie K.P.M., Baudenbacher F.J. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. Lab Chip. 2013;13:4663–4673. doi: 10.1039/c3lc50779c. PubMed DOI PMC

Pires N.M., Dong T. Detection of stress hormones by a microfluidic-integrated polycarbazole/fullerene photodetector; Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013. PubMed

Broccardo C.J., Schauer K.L., Kohrt W.M., Schwartz R.S., Murphy J.P., Prenni J.E. Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013;934:16–21. doi: 10.1016/j.jchromb.2013.06.031. PubMed DOI PMC

Kim J., Abdulwahab S., Choi K., Lafrenière N.M., Mudrik J.M., Gomaa H., Ahmado H., Behan L.-A., Casper R.F., Wheeler A.R. A microfluidic technique for quantification of steroids in core needle biopsies. Anal. Chem. 2015;87:4688–4695. doi: 10.1021/ac5043297. PubMed DOI

Kaushik A., Yndart A., Jayant R.D., Sagar V., Atluri V., Bhansali S., Nair M. Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients. Int. J. Nanomedicine. 2015;10:677–685. PubMed PMC

Selimovic A., Erkal J.L., Spence D.M., Martin R.S. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst. 2014;139:5686–5694. doi: 10.1039/C4AN01062K. PubMed DOI PMC

Shamsi M.H., Choi K., Ng A.H.C., Wheeler A.R. A digital microfluidic electrochemical immunoassay. Lab Chip. 2014;14:547–554. doi: 10.1039/C3LC51063H. PubMed DOI

Arends F., Sellner S., Seifert P., Gerland U., Rehberg M., Lieleg O. A microfluidics approach to study the accumulation of molecules at basal lamina interfaces. Lab Chip. 2015;15:3326–3334. doi: 10.1039/C5LC00561B. PubMed DOI

Zhu B., Smith J., Yarmush M.L., Nahmias Y., Kirby B.J., Murthy S.K. Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro. Tissue Eng. Part C Methods. 2013;19:765–773. doi: 10.1089/ten.tec.2012.0638. PubMed DOI PMC

Jean L., Yang L., Majumdar D., Gao Y., Shi M., Brewer B.M., Li D., Webb D.J. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh. Migr. 2014;8:460–467. doi: 10.4161/19336918.2014.983778. PubMed DOI PMC

Liu G., Smith K., Kaya T. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 doi: 10.1109/EMBC.2014.6943929. PubMed DOI

Rose D.P., Ratterman M.E., Griffin D.K., Hou L., Kelley-Loughnane N., Naik R.R., Hagen J.A., Papautsky I., Heikenfeld J. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2015;62:1457–1465. doi: 10.1109/TBME.2014.2369991. PubMed DOI

Li Y., Wang S., Huang R., Huang Z., Hu B., Zheng W., Yang G., Jiang X. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules. 2015;16:780–789. doi: 10.1021/bm501680s. PubMed DOI

Lo J.F., Brennan M., Merchant Z., Chen L., Guo S., Eddington D.T., DiPietro L.A. Microfluidic wound bandage: Localized oxygen modulation of collagen maturation. Wound Repair Regen. 2013;21:226–234. doi: 10.1111/wrr.12021. PubMed DOI PMC

Berthier E., Young E.W.K., Beebe D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip. 2012;12:1224–1237. doi: 10.1039/c2lc20982a. PubMed DOI

Zheng W., Jiang B., Wang D., Zhang W., Wang Z., Jiang X. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip. 2012;12:3441–3450. doi: 10.1039/c2lc40173h. PubMed DOI

Zheng W., Jiang B., Hao Y., Zhao Y., Zhang W., Jiang X. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication. 2014;6:045004:1–045004:11. doi: 10.1088/1758-5082/6/4/045004. PubMed DOI

Nalayanda D.D., Wang Q., Fulton W.B., Wang T.-H., Abdullah F. Engineering an artificial alveolar-capillary membrane: A novel continuously perfused model within microchannels. J. Pediatr. Surg. 2010;45:45–51. doi: 10.1016/j.jpedsurg.2009.10.008. PubMed DOI PMC

Nalayanda D.D., Puleo C.M., Fulton W.B., Wang T.-H., Abdullah F. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Exp. Lung Res. 2007;33:321–335. doi: 10.1080/01902140701557754. PubMed DOI

Nichols J.E., Niles J.A., Vega S.P., Argueta L.B., Eastaway A., Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp. Biol. Med. 2014;239:1135–1169. doi: 10.1177/1535370214536679. PubMed DOI

Zeng L., Qiu L., Yang X., Zhou Y., Du J., Wang H., Sun J., Yang C., Jiang J. Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system. Cell Biol. Int. 2015 doi: 10.1002/cbin.10513. PubMed DOI

Hoganson D.M., Pryor H.I., II, Bassett E.K., Spool I.D., Vacanti J.P. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab Chip. 2011;11:700–707. doi: 10.1039/C0LC00158A. PubMed DOI

Kniazeva T., Hsiao J.C., Charest J.L., Borenstein J.T. A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed. Microdevices. 2011;13:315–323. doi: 10.1007/s10544-010-9495-1. PubMed DOI

Kniazeva T., Epshteyn A.A., Hsiao J.C., Kim E.S., Kolachalama V.B., Charest J.L., Borenstein J.T. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device. Lab Chip. 2012;12:1686–1695. doi: 10.1039/c2lc21156d. PubMed DOI PMC

Kovach K.M., LaBarbera M.A., Moyer M.C., Cmolik B.L., van Lunteren E., Sen Gupta A., Capadona J.R., Potkay J.A. In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab Chip. 2015;15:1366–1375. doi: 10.1039/C4LC01284D. PubMed DOI

Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2005;2:599–605. doi: 10.1038/nmeth777. PubMed DOI PMC

Booth R., Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB) Lab Chip. 2012;12:1784–1792. doi: 10.1039/c2lc40094d. PubMed DOI

Shintu L., Baudoin R., Navratil V., Prot J.-M., Pontoizeau C., Defernez M., Blaise B.J., Domange C., Péry A.R., Toulhoat P., et al. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal. Chem. 2012;84:1840–1848. doi: 10.1021/ac2011075. PubMed DOI

Baudoin R., Legendre A., Jacques S., Cotton J., Bois F., Leclerc E. Evaluation of a liver microfluidic biochip to predict in vivo clearances of seven drugs in rats. J. Pharm. Sci. 2014;103:706–718. doi: 10.1002/jps.23796. PubMed DOI

Van Midwoud P.M., Verpoorte E., Groothuis G.M.M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 2011;3:509–521. doi: 10.1039/c0ib00119h. PubMed DOI

Russell S.J., El-Khatib F.H., Sinha M., Magyar K.L., McKeon K., Goergen L.G., Balliro C., Hillard M.A., Nathan D.M., Damiano E.R. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 2014;371:313–325. doi: 10.1056/NEJMoa1314474. PubMed DOI PMC

Xu S., Zhang Y., Jia L., Mathewson K.E., Jang K.-I., Kim J., Fu H., Huang X., Chava P., Wang R., et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 2014;344:70–74. doi: 10.1126/science.1250169. PubMed DOI

Sonner Z., Wilder E., Heikenfeld J., Kasting G., Beyette F., Swaile D., Sherman F., Joyce J., Hagen J., Kelley-Loughnane N., et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015 doi: 10.1063/1.4921039. PubMed DOI PMC

Scannell J.W., Blanckley A., Boldon H., Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012;11:191–200. PubMed

Esch M.B., Mahler G.J., Stokol T., Shuler M.L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip. 2014;14:3081–3092. doi: 10.1039/C4LC00371C. PubMed DOI PMC

Shuler M.L. Modeling life. Ann. Biomed. Eng. 2012;40:1399–1407. doi: 10.1007/s10439-012-0567-7. PubMed DOI

Akagi T., Kato K., Kobayashi M., Kosaka N., Ochiya T., Ichiki T. On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells. PLoS ONE. 2015;10:e0123603. doi: 10.1371/journal.pone.0123603. PubMed DOI PMC

Huang N.-T., Chen W., Oh B.-R., Cornell T.T., Shanley T.P., Fu J., Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093–4101. doi: 10.1039/c2lc40619e. PubMed DOI PMC

Esch M.B., King T.L., Shuler M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 2011;13:55–72. doi: 10.1146/annurev-bioeng-071910-124629. PubMed DOI

Vunjak-Novakovic G., Bhatia S., Chen C., Hirschi K. HeLiVa platform: Integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res. Ther. 2013 doi: 10.1186/scrt369. PubMed DOI PMC

Prot J.M., Maciel L., Bricks T., Merlier F., Cotton J., Paullier P., Bois F.Y., Leclerc E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 2014;111:2027–2040. doi: 10.1002/bit.25232. PubMed DOI

Maschmeyer I., Lorenz A.K., Schimek K., Hasenberg T., Ramme A.P., Hübner J., Lindner M., Drewell C., Bauer S., Thomas A., et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15:2688–2699. doi: 10.1039/C5LC00392J. PubMed DOI

Maschmeyer I., Hasenberg T., Jaenicke A., Lindner M., Lorenz A.K., Zech J., Garbe L.-A., Sonntag F., Hayden P., Ayehunie S., et al. Chip-based human liver–intestine and liver–skin co-cultures—A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 2015 doi: 10.1016/j.ejpb.2015.03.002. PubMed DOI PMC

Frey O., Misun P.M., Fluri D.A., Hengstler J.G., Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 2014;5:1–11. PubMed

Kim J.-Y., Fluri D.A., Kelm J.M., Hierlemann A., Frey O. 96-Well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J. Lab. Autom. 2015;20:274–282. doi: 10.1177/2211068214564056. PubMed DOI

Kim J.-Y., Fluri D.A., Marchan R., Boonen K., Mohanty S., Singh P., Hammad S., Landuyt B., Hengstler J.G., Kelm J.M., et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J. Biotechnol. 2015;205:24–35. doi: 10.1016/j.jbiotec.2015.01.003. PubMed DOI

Sung J.H., Kam C., Shuler M.L. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip. 2010;10:446–455. doi: 10.1039/b917763a. PubMed DOI

Sung J.H., Srinivasan B., Esch M.B., McLamb W.T., Bernabini C., Shuler M.L., Hickman J.J. Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 2014;239:1225–1239. doi: 10.1177/1535370214529397. PubMed DOI PMC

Wikswo J.P., Curtis E.L., Eagleton Z.E., Evans B.C., Kole A., Hofmeister L.H., Matloff W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 2013;13:3496–3511. doi: 10.1039/c3lc50243k. PubMed DOI PMC

Huh D., Hamilton G.A., Ingber D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–754. doi: 10.1016/j.tcb.2011.09.005. PubMed DOI PMC

Dance A. Correction for Dance, News Feature: Building benchtop human models. Proc. Natl. Acad. Sci. USA. 2015;112:6773–6775. doi: 10.1073/pnas.1508841112. PubMed DOI PMC

Chen Y.-C., Allen S.G., Ingram P.N., Buckanovich R., Merajver S.D., Yoon E. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 2015;5:1–13. doi: 10.1038/srep09980. PubMed DOI PMC

Lee H., Park W., Ryu H., Jeon N.L. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasationa. Biomicrofluidics. 2014 doi: 10.1063/1.4894595. PubMed DOI PMC

Mattei F., Schiavoni G., De Ninno A., Lucarini V., Sestili P., Sistigu A., Fragale A., Sanchez M., Spada M., Gerardino A., et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 2014;11:337–346. doi: 10.3109/1547691X.2014.891677. PubMed DOI

Zhang Y., Zhou L., Qin L. High-throughput 3D cell invasion chip enables accurate cancer metastatic assays. J. Am. Chem. Soc. 2014;136:15257–15262. doi: 10.1021/ja5072114. PubMed DOI PMC

Zou H., Yue W., Yu W.-K., Liu D., Fong C.-C., Zhao J., Yang M. Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal. Chem. 2015;87:7098–7108. doi: 10.1021/acs.analchem.5b00873. PubMed DOI

Riahi R., Yang Y.L., Kim H., Jiang L., Wong P.K., Zohar Y. A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics. 2014;8:024103. doi: 10.1063/1.4868301. PubMed DOI PMC

Wang X.-Y., Pei Y., Xie M., Jin Z.-H., Xiao Y.-S., Wang Y., Zhang L.-N., Li Y., Huang W.-H. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells. Lab Chip. 2015;15:1178–1187. doi: 10.1039/C4LC00973H. PubMed DOI

Casavant B.P., Strotman L.N., Tokar J.J., Thiede S.M., Traynor A.M., Ferguson J.S., Lang J.M., Beebe D. Paired diagnostic and pharmacodynamic analysis of rare non-small cell lung cancer cells enabled by the VerIFAST platform. Lab Chip. 2014;14:99–105. doi: 10.1039/C3LC50912E. PubMed DOI PMC

Park J.-M., Kim M.S., Moon H.-S., Yoo C.E., Park D., Kim Y.J., Han K.-Y., Lee J.-Y., Oh J.H., Kim S.S., et al. Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc. Anal. Chem. 2014;86:3735–3742. doi: 10.1021/ac403456t. PubMed DOI

Watanabe M., Serizawa M., Sawada T., Takeda K., Takahashi T., Yamamoto N., Koizumi F., Koh Y. A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood. J. Transl. Med. 2014;12:1–12. doi: 10.1186/1479-5876-12-143. PubMed DOI PMC

Yu I.F., Yu Y.H., Chen L.Y., Fan S.K., Chou H.Y.E., Yang J.T. A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip. 2014;14:3621–3628. doi: 10.1039/C4LC00502C. PubMed DOI

Galletti G., Sung M.S., Vahdat L.T., Shah M.A., Santana S.M., Altavilla G., Kirby B.J., Giannakakou P. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 2014;14:147–156. doi: 10.1039/C3LC51039E. PubMed DOI PMC

Sarioglu A.F., Aceto N., Kojic N., Donaldson M.C., Zeinali M., Hamza B., Engstrom A., Zhu H., Sundaresan T.K., Miyamoto D.T., et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods. 2015;12:685–691. doi: 10.1038/nmeth.3404. PubMed DOI PMC

Lu Y.-T., Zhao L., Shen Q., Garcia M.A., Wu D., Hou S., Song M., Xu X., OuYang W.-H., OuYang W.W.-L., et al. NanoVelcro chip for CTC enumeration in prostate cancer patients. Methods. 2013;64:144–152. doi: 10.1016/j.ymeth.2013.06.019. PubMed DOI PMC

Huang M.-Y., Liu H.-C., Yen L.-C., Chang J.-Y., Huang J.-J., Wang J.-Y., Lin S.-R. Decreasing relapse in colorectal cancer patients treated with cetuximab by using the activating KRAS detection chip. Tumor Biol. 2014;35:9639–9647. doi: 10.1007/s13277-014-2263-8. PubMed DOI

Xue P., Wu Y., Guo J., Kang Y. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed. Microdevices. 2015 doi: 10.1007/s10544-015-9945-x. PubMed DOI

Zhang Z., Shiratsuchi H., Lin J., Chen G., Reddy R.M., Azizi E., Fouladdel S., Chang A.C., Lin L., Jiang H., et al. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget. 2014;5:12383–12397. doi: 10.18632/oncotarget.2592. PubMed DOI PMC

Huang T., Jia C.-P., Jun-Yang, Sun W.-J., Wang W.-T., Zhang H.-L., Cong H., Jing F.-X., Mao H.-J., Jin Q.-H., et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens. Bioelectron. 2014;51:213–218. doi: 10.1016/j.bios.2013.07.044. PubMed DOI

Ying L., Zhu Z., Xu Z., He T., Li E., Guo Z., Liu F., Jiang C., Wang Q. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLoS ONE. 2015;10:e0129593. doi: 10.1371/journal.pone.0129593. PubMed DOI PMC

Ruppen J., Wildhaber F.D., Strub C., Hall S.R.R., Schmid R.A., Geiser T., Guenat O.T. Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip. 2015;15:3076–3085. doi: 10.1039/C5LC00454C. PubMed DOI

Jeon J.S., Zervantonakis I.K., Chung S., Kamm R.D., Charest J.L. In vitro model of tumor cell extravasation. PLoS ONE. 2013;8:e56910. doi: 10.1371/journal.pone.0056910. PubMed DOI PMC

Bersini S., Jeon J.S., Dubini G., Arrigoni C., Chung S., Charest J.L., Moretti M., Kamm R.D. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35:2454–2461. doi: 10.1016/j.biomaterials.2013.11.050. PubMed DOI PMC

Jeon J.S., Bersini S., Gilardi M., Dubini G., Charest J.L., Moretti M., Kamm R.D. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA. 2015;112:214–219. doi: 10.1073/pnas.1417115112. PubMed DOI PMC

Wikswo J.P., Block F.E., Cliffel D.E., Goodwin C.R., Marasco C.C., Markov D.A., McLean D.L., McLean J.A., McKenzie J.R., Reiserer R.S., et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 2013;60:682–690. doi: 10.1109/TBME.2013.2244891. PubMed DOI PMC

Hayes D.F., Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Miller M.C., Matera J., Allard W.J., Doyle G.V., Terstappen L.W.W.M. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 2006;12:4218–4224. doi: 10.1158/1078-0432.CCR-05-2821. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...