Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26690442
PubMed Central
PMC4721768
DOI
10.3390/s151229848
PII: s151229848
Knihovny.cz E-zdroje
- Klíčová slova
- BioMEMs, body-on-a-chip, microfluidics, organ-on-a-chip, tissue engineering,
- MeSH
- biologické modely * MeSH
- biomedicínský výzkum MeSH
- čipová analýza tkání * MeSH
- lidé MeSH
- mikroelektromechanické systémy MeSH
- mikrofluidní analytické techniky * MeSH
- myši MeSH
- tkáňové inženýrství * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called "organ-on-a-chip" technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Center for Biomedical Research University of Algarve Faro 8005 139 Portugal
Department of Biomaterials Science University of Turku Turku 20014 Finland
International Clinical Research Center St Anne's University Hospital Brno 656 91 Czech Republic
Tissue Engineering Unit Università Campus Bio Medico di Roma Rome 00128 Italy
Zobrazit více v PubMed
Langer R., Vacanti J.P. Tissue Engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529. PubMed DOI
Caplin J.D., Granados N.G., James M.R., Montazami R., Hashemi N. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 2015;4:1426–1450. doi: 10.1002/adhm.201500040. PubMed DOI
Esch E.W., Bahinski A., Huh D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015;14:248–260. doi: 10.1038/nrd4539. PubMed DOI PMC
Skommer J., Wlodkowic D. Successes and future outlook for microfluidics-based cardiovascular drug discovery. Exp. Opin. Drug Discov. 2015;10:231–244. doi: 10.1517/17460441.2015.1001736. PubMed DOI
Esteves-Villanueva J.O., Trzeciakiewicz H., Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst. 2014;139:2823–2831. doi: 10.1039/c4an00204k. PubMed DOI
Vistas C.R., Soares S.S., Rodrigues R.M.M., Chu V., Conde J.P., Ferreira G.N.M. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor. Analyst. 2014;139:3709–3713. doi: 10.1039/c4an00695j. PubMed DOI
Zhang M., Yin B.-C., Wang X.-F., Ye B.-C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem. Commun. 2011;47:2399–2401. doi: 10.1039/C0CC04887A. PubMed DOI
Das G., Chirumamilla M., Toma A., Gopalakrishnan A., Zaccaria R.P., Alabastri A., Leoncini M., Di Fabrizio E. Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 2013;3:1–6. doi: 10.1038/srep01792. PubMed DOI PMC
Xu J.J., Chen H.Y. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(p-phenylenediamine) at a platinum microdisk electrode. Anal. Biochem. 2000;280:221–226. PubMed
Mishra G.K., Sharma A., Deshpande K., Bhand S. Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor. Appl. Biochem. Biotechnol. 2014;174:998–1009. doi: 10.1007/s12010-014-0985-0. PubMed DOI
Javanmard M., Davis R.W. A microfluidic platform for electrical detection of DNA hybridization. Sens. Actuators B Chem. 2011;154:22–27. doi: 10.1016/j.snb.2010.03.067. PubMed DOI PMC
De-Carvalho J., Rodrigues R.M.M., Tomé B., Henriques S.F., Mira N.P., Sá-Correia I., Ferreira G.N.M. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model. Analyst. 2014;139:1847–1855. doi: 10.1039/C3AN01682J. PubMed DOI
Nguyen T.A., Yin T.-I., Reyes D., Urban G.A. A microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal. Chem. 2013;85:11068–11076. doi: 10.1021/ac402761s. PubMed DOI
Weltin A., Slotwinski K., Kieninger J., Moser I., Jobst G., Wego M., Ehret R., Urban G.A. Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem. Lab Chip. 2014;14:138–146. doi: 10.1039/C3LC50759A. PubMed DOI
Tian B., Liu J., Dvir T., Jin L., Tsui J.H., Qing Q., Suo Z., Langer R., Kohane D.S., Lieber C.M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012;11:986–994. doi: 10.1038/nmat3404. PubMed DOI PMC
Manz A., Harrison D.J., Verpoorte E.M.J., Fettinger J.C., Paulus A., Lüdi H., Widmer H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—Capillary electrophoresis on a chip. J. Chromatogr. A. 1992;593:253–258. doi: 10.1016/0021-9673(92)80293-4. DOI
Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442:368–373. doi: 10.1038/nature05058. PubMed DOI
Madadi H., Casals-Terré J., Mohammadi M. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing. Biofabrication. 2015;7:025007:1–025007:11. doi: 10.1088/1758-5090/7/2/025007. PubMed DOI
Lee L.M., Liu A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2014;5:040801:1–040801:6. doi: 10.1115/1.4029936. PubMed DOI PMC
Giobbe G.G., Michielin F., Luni C., Giulitti S., Martewicz S., Dupont S., Floreani A., Elvassore N. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods. 2015;12:637–640. doi: 10.1038/nmeth.3411. PubMed DOI
Vasiliauskas R., Liu D., Cito S., Zhang H., Shahbazi M.-A., Sikanen T., Mazutis L., Santos H.A. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl. Mater. Interfaces. 2015;7:14822–14832. doi: 10.1021/acsami.5b04824. PubMed DOI
Pullagurla S.R., Witek M.A., Jackson J.M., Lindell M.A.M., Hupert M.L., Nesterova I.V., Baird A.E., Soper S.A. Parallel affinity-based isolation of leukocyte subsets using microfluidics: Application for stroke diagnosis. Anal. Chem. 2014;86:4058–4065. doi: 10.1021/ac5007766. PubMed DOI PMC
Ho S.S.Y., Chua C., Gole L., Biswas A., Koay E., Choolani M. Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization. Prenat. Diagn. 2012;32:321–328. doi: 10.1002/pd.2946. PubMed DOI
De la Rica R., Stevens M.M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 2013;8:1759–1764. doi: 10.1038/nprot.2013.085. PubMed DOI
Stern E., Vacic A., Rajan N.K., Criscione J.M., Park J., Ilic B.R., Mooney D.J., Reed M.A., Fahmy T.M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010;5:138–142. doi: 10.1038/nnano.2009.353. PubMed DOI PMC
Andreou C., Hoonejani M.R., Barmi M.R., Moskovits M., Meinhart C.D. Rapid detection of drugs of abuse in saliva using surface enhanced raman spectroscopy and microfluidics. ACS Nano. 2013;7:7157–7164. doi: 10.1021/nn402563f. PubMed DOI
Zhu K.Y., Leung K.W., Ting A.K.L., Wong Z.C.F., Ng W.Y.Y., Choi R.C.Y., Dong T.T.X., Wang T., Lau D.T.W., Tsim K.W.K. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal. Chem. 2012;402:2805–2815. doi: 10.1007/s00216-012-5711-6. PubMed DOI
Swensen J.S., Xiao Y., Ferguson B.S., Lubin A.A., Lai R.Y., Heeger A.J., Plaxco K.W., Soh H.T. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 2009;131:4262–4266. doi: 10.1021/ja806531z. PubMed DOI PMC
Bell S.C., Hanes R.D. A microfluidic device for presumptive testing of controlled substances. J. Forensic Sci. 2007;52:884–888. doi: 10.1111/j.1556-4029.2007.00478.x. PubMed DOI
Wang J., Sun J., Song Y., Xu Y., Pan X., Sun Y., Li D. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence. Sensors. 2013;13:16075–16089. doi: 10.3390/s131216075. PubMed DOI PMC
Buffi N., Merulla D., Beutier J., Barbaud F., Beggah S., van Linte H., Renaud P., van der Meer J.R. Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device. Bioeng. Bugs. 2011;2:296–298. doi: 10.4161/bbug.2.5.17236. PubMed DOI
Duford D.A., Xi Y., Salin E.D. Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal. Chem. 2013;85:7834–7841. doi: 10.1021/ac401416w. PubMed DOI
Foudeh A.M., Brassard D., Tabrizian M., Veres T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip. 2015;15:1609–1618. doi: 10.1039/C4LC01468E. PubMed DOI
Charles P.T., Adams A.A., Deschamps J.R., Veitch S., Hanson A., Kusterbeck A.W. Detection of explosives in a dynamic marine environment using a moored TNT immunosensor. Sensors. 2014;14:4074–4085. doi: 10.3390/s140304074. PubMed DOI PMC
Tan H.Y., Loke W.K., Tan Y.T., Nguyen N.-T. A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip. 2008;8:885–891. doi: 10.1039/b800438b. PubMed DOI
De Santis R., Ciammaruconi A., Faggioni G., Fillo S., Gentile B., Di Giannatale E., Ancora M., Lista F. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiol. 2011;11:1–9. doi: 10.1186/1471-2180-11-60. PubMed DOI PMC
Dulay S.B., Gransee R., Julich S., Tomaso H., O’Sullivan C.K. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis. Biosens. Bioelectron. 2014;59:342–349. doi: 10.1016/j.bios.2014.03.024. PubMed DOI
Matatagui D., Fontecha J.L., Fernández M.J., Gràcia I., Cané C., Santos J.P., Horrillo M.C. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents. Sensors. 2014;14:12658–12669. doi: 10.3390/s140712658. PubMed DOI PMC
Shapiro M.S., Haswell S.J., Lye G.J., Bracewell D.G. Microfluidic chromatography for early stage evaluation of biopharmaceutical binding and separation conditions. Sep. Sci. Technol. 2011;46:185–194. doi: 10.1080/01496395.2010.511641. DOI
Chen D.L., Ismagilov R.F. Microfluidic cartridges preloaded with nanoliter plugs of reagents: An alternative to 96-well plates for screening. Curr. Opin. Chem. Biol. 2006;10:226–231. doi: 10.1016/j.cbpa.2006.04.004. PubMed DOI PMC
Zhang C., Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Res. 2007;35:4223–4237. doi: 10.1093/nar/gkm389. PubMed DOI PMC
Cao Q., Mahalanabis M., Chang J., Carey B., Hsieh C., Stanley A., Odell C.A., Mitchell P., Feldman J., Pollock N.R., et al. Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens. PLoS ONE. 2012;7:e33176. doi: 10.1371/journal.pone.0033176. PubMed DOI PMC
Schell W.A., Benton J.L., Smith P.B., Poore M., Rouse J.L., Boles D.J., Johnson M.D., Alexander B.D., Pamula V.K., Eckhardt A.E., et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:2237–2245. doi: 10.1007/s10096-012-1561-6. PubMed DOI PMC
Ishii S., Segawa T., Okabe S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl. Environ. Microbiol. 2013;79:2891–2898. doi: 10.1128/AEM.00205-13. PubMed DOI PMC
Spurgeon S.L., Jones R.C., Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE. 2008;3:e1662. doi: 10.1371/journal.pone.0001662. PubMed DOI PMC
Chen Y., Zhong J.F. Microfluidic devices for high-throughput gene expression profiling of single hESC-derived neural stem cells. Methods Mol. Biol. 2008;438:293–303. PubMed
May-Panloup P., Ferre-L’Hotellier V., Moriniere C., Marcaillou C., Lemerle S., Malinge M.-C., Coutolleau A., Lucas N., Reynier P., Descamps P., et al. Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum. Reprod. 2012;27:829–843. doi: 10.1093/humrep/der431. PubMed DOI
Shaw K.J., Hughes E.M., Dyer C.E., Greenman J., Haswell S.J. Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device. Lab. Investig. 2013;93:961–966. doi: 10.1038/labinvest.2013.76. PubMed DOI
Mellors J.S., Gorbounov V., Ramsey R.S., Ramsey J.M. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. 2008;80:6881–6887. doi: 10.1021/ac800428w. PubMed DOI PMC
Focke M., Mark D., Stumpf F., Müller M., Roth G., Zengerle R., von Stetten F. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments. In: Schmid U., Sánchez-Rojas J.L., Leester-Schaedel M., editors. Proceedings of the SPIE, Smart Sensors, Actuators, and MEMS V; Prague, Czech Republic. 18–20 April 2011;
Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007;46:1318–1320. doi: 10.1002/anie.200603817. PubMed DOI PMC
Martinez A.W., Phillips S.T., Whitesides G.M., Carrilho E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010;82:3–10. doi: 10.1021/ac9013989. PubMed DOI
Mukhopadhyay R. When microfluidic devices go bad. Anal. Chem. 2005;77:429A–432A. doi: 10.1021/ac053496h. PubMed DOI
Zhou J., Khodakov D.A., Ellis A.V., Voelcker N.H. Surface modification for PDMS-based microfluidic devices. Electrophoresis. 2012;33:89–104. doi: 10.1002/elps.201100482. PubMed DOI
Barbulovic-Nad I., Wheeler A.R. Encyclopedia of Microfluidics and Nanofluidics. Springer; Berlin, Germany: 2008. Cell Assays in Microfluidics; pp. 209–216.
Xiong B., Ren K., Shu Y., Chen Y., Shen B., Wu H. Recent developments in microfluidics for cell studies. Adv. Mater. 2014;26:5525–5532. doi: 10.1002/adma.201305348. PubMed DOI
Borenstein J.T., Vunjak-Novakovic G. Engineering tissue with BioMEMS. IEEE Pulse. 2011;2:28–34. doi: 10.1109/MPUL.2011.942764. PubMed DOI PMC
Tourovskaia A., Fauver M., Kramer G., Simonson S., Neumann T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol. Med. 2014;239:1264–1271. doi: 10.1177/1535370214539228. PubMed DOI PMC
Theberge A.B., Yu J., Young E.W.K., Ricke W.A., Bushman W., Beebe D.J. Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis. Anal. Chem. 2015;87:3239–3246. doi: 10.1021/ac503700f. PubMed DOI PMC
Guo Q., Duffy S.P., Matthews K., Santoso A.T., Scott M.D., Ma H. Microfluidic analysis of red blood cell deformability. J. Biomech. 2014;47:1767–1776. doi: 10.1016/j.jbiomech.2014.03.038. PubMed DOI
Grosberg A., Alford P.W., McCain M.L., Parker K.K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip. 2011;11:4165–4173. doi: 10.1039/c1lc20557a. PubMed DOI PMC
Yeom E., Kang Y.J., Lee S. Changes in velocity profile according to blood viscosity in a microchannel. Biomicrofluidics. 2014;8:034110:1–034110:11. doi: 10.1063/1.4883275. PubMed DOI PMC
Yeom E., Jun Kang Y., Joon Lee S. Hybrid system for ex vivo hemorheological and hemodynamic analysis: A feasibility study. Sci. Rep. 2015;5:1–15. doi: 10.1038/srep11064. PubMed DOI PMC
Tomaiuolo G., Lanotte L., D’Apolito R., Cassinese A., Guido S. Microconfined flow behavior of red blood cells. Med. Eng. Phys. 2015 doi: 10.1016/j.medengphy.2015.05.007. PubMed DOI
Li L., Lv X., Ostrovidov S., Shi X., Zhang N., Liu J. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. Mol. Pharm. 2014;11:2009–2015. doi: 10.1021/mp5000532. PubMed DOI
McCain M.L., Sheehy S.P., Grosberg A., Goss J.A., Parker K.K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. USA. 2013;110:9770–9775. doi: 10.1073/pnas.1304913110. PubMed DOI PMC
Giridharan G.A., Nguyen M.-D., Estrada R., Parichehreh V., Hamid T., Ismahil M.A., Prabhu S.D., Sethu P. Microfluidic cardiac cell culture model (μCCCM) Anal. Chem. 2010;82:7581–7587. doi: 10.1021/ac1012893. PubMed DOI
Yasotharan S., Pinto S., Sled J.G., Bolz S.-S., Günther A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip. 2015;15:2660–2669. doi: 10.1039/C5LC00021A. PubMed DOI
Ryu H., Oh S., Lee H.J., Lee J.Y., Lee H.K., Jeon N.L. Engineering a blood vessel network module for body-on-a-chip applications. J. Lab. Autom. 2015;20:296–301. doi: 10.1177/2211068214562831. PubMed DOI
Hattori K., Munehira Y., Kobayashi H., Satoh T., Sugiura S., Kanamori T. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. J. Biosci. Bioeng. 2014;118:327–332. doi: 10.1016/j.jbiosc.2014.02.006. PubMed DOI
Hald E.S., Steucke K.E., Reeves J.A., Win Z., Alford P.W. Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication. 2014;6:045005:1–045005:11. doi: 10.1088/1758-5082/6/4/045005. PubMed DOI
Dominical V.M., Vital D.M., O’Dowd F., Saad S.T.O., Costa F.F., Conran N. In vitro microfluidic model for the study of vaso-occlusive processes. Exp. Hematol. 2015;43:223–228. doi: 10.1016/j.exphem.2014.10.015. PubMed DOI
Harris D.G., Benipal P.K., Cheng X., Burdorf L., Azimzadeh A.M., Pierson R.N. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: Development and application to xenotransplantation. PLoS ONE. 2015;10:e0123015. doi: 10.1371/journal.pone.0123015. PubMed DOI PMC
Hu R., Li F., Lv J., He Y., Lu D., Yamada T., Ono N. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels. Biomed. Microdevices. 2015;17:1387–2176. doi: 10.1007/s10544-015-9959-4. PubMed DOI
Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668. doi: 10.1126/science.1188302. PubMed DOI PMC
Bol L., Galas J.-C., Hillaireau H., Potier I.L., Nicolas V., Haghiri-Gosnet A.-M., Fattal E., Taverna M. A microdevice for parallelized pulmonary permeability studies. Biomed. Microdevices. 2014;16:277–285. doi: 10.1007/s10544-013-9831-3. PubMed DOI
Kao Y.-C., Hsieh M.-H., Liu C.-C., Pan H.-J., Liao W.-Y., Cheng J.-Y., Kuo P.-L., Lee C.-H. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device. Biomicrofluidics. 2014;8:024107:1–024107:12. doi: 10.1063/1.4870401. PubMed DOI PMC
Sellgren K.L., Butala E.J., Gilmour B.P., Randell S.H., Grego S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip. 2014;14:3349–3358. doi: 10.1039/C4LC00552J. PubMed DOI
Ling T.-Y., Liu Y.-L., Huang Y.-K., Gu S.-Y., Chen H.-K., Ho C.-C., Tsao P.-N., Tung Y.-C., Chen H.-W., Cheng C.-H., et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold. Biomaterials. 2014;35:5660–5669. doi: 10.1016/j.biomaterials.2014.03.074. PubMed DOI
Punde T.H., Wu W.-H., Lien P.-C., Chang Y.-L., Kuo P.-H., Chang M.D.-T., Lee K.-Y., Huang C.-D., Kuo H.-P., Chan Y.-F., et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr. Biol. 2015;7:162–169. doi: 10.1039/C4IB00239C. PubMed DOI
Wu J., Hillier C., Komenda P., Lobato de Faria R., Levin D., Zhang M., Lin F. A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients. PLoS ONE. 2015;10:e0126523. doi: 10.1371/journal.pone.0126523. PubMed DOI PMC
Cortez-Jugo C., Qi A., Rajapaksa A., Friend J.R., Yeo L.Y. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics. 2015;9:1–10. doi: 10.1063/1.4917181. PubMed DOI PMC
Rochow N., Manan A., Wu W.-I., Fusch G., Monkman S., Leung J., Chan E., Nagpal D., Predescu D., Brash J., et al. An integrated array of microfluidic oxygenators as a neonatal lung assist device: In vitro characterization and in vivo demonstration. Artif. Organs. 2014;38:856–866. doi: 10.1111/aor.12269. PubMed DOI
Li E., Xu Z., Liu F., Wang H., Wen J., Shao S., Zhang L., Wang L., Liu C., Lu J., et al. Continual exposure to cigarette smoke extracts induces tumor-Like transformation of human nontumor bronchial epithelial cells in a microfluidic chip. J. Thorac. Oncol. 2014;9:1091–1100. doi: 10.1097/JTO.0000000000000219. PubMed DOI
Felder M., Stucki A.O., Stucki J.D., Geiser T., Guenat O.T. The potential of microfluidic lung epithelial wounding: Towards in vivo-like alveolar microinjuries. Integr. Biol. 2014;6:1132–1140. doi: 10.1039/C4IB00149D. PubMed DOI
Eleftheriadou I., Trabalza A., Ellison S.M., Gharun K., Mazarakis N.D. Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol. Ther. 2014;22:1285–1298. doi: 10.1038/mt.2014.49. PubMed DOI PMC
Neumann S., Campbell G.E., Szpankowski L., Goldstein L.S.B., Encalada S.E. Characterizing the composition of molecular motors on moving axonal cargo using “cargo mapping” analysis. J. Vis. Exp. 2014:1–2. doi: 10.3791/52029. PubMed DOI PMC
Wang T., Martin S., Papadopulos A., Harper C.B., Mavlyutov T.A., Niranjan D., Glass N.R., Cooper-White J.J., Sibarita J.-B., Choquet D., et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J. Neurosci. 2015;35:6179–6194. doi: 10.1523/JNEUROSCI.3757-14.2015. PubMed DOI PMC
Zhao X., Zhou Y., Weissmiller A.M., Pearn M.L., Mobley W.C., Wu C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J. Vis. Exp. 2014;91:e51899. doi: 10.3791/51899. PubMed DOI PMC
Robertson G., Bushell T.J., Zagnoni M. Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr. Biol. 2014;6:636–644. doi: 10.1039/c3ib40221e. PubMed DOI
Xu H., Ferreira M.M., Heilshorn S.C. Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab Chip. 2014;14:2047–2056. doi: 10.1039/C4LC00162A. PubMed DOI PMC
An Q., Fillmore H.L., Vouri M., Pilkington G.J. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro. Oncol. 2014;16:265–273. doi: 10.1093/neuonc/not202. PubMed DOI PMC
Pollen A.A., Nowakowski T.J., Shuga J., Wang X., Leyrat A.A., Lui J.H., Li N., Szpankowski L., Fowler B., Chen P., et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 2014;32:1053–1058. doi: 10.1038/nbt.2967. PubMed DOI PMC
Kerman B.E., Kim H.J., Padmanabhan K., Mei A., Georges S., Joens M.S., Fitzpatrick J.A.J., Jappelli R., Chandross K.J., August P., et al. In vitro myelin formation using embryonic stem cells. Development. 2015;142:2213–2225. doi: 10.1242/dev.116517. PubMed DOI PMC
Nery F.C., da Hora C.C., Yaqub U., Zhang X., McCarthy D.M., Bhide P.G., Irimia D., Breakefield X.O. New methods for investigation of neuronal migration in embryonic brain explants. J. Neurosci. Methods. 2015;239:80–84. doi: 10.1016/j.jneumeth.2014.09.028. PubMed DOI PMC
Wu K.-Y., He M., Hou Q.-Q., Sheng A.-L., Yuan L., Liu F., Liu W.-W., Li G., Jiang X.-Y., Luo Z.-G. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci. Signal. 2014;7:1–13. doi: 10.1126/scisignal.2005334. PubMed DOI PMC
Rajbhandari L., Tegenge M.A., Shrestha S., Ganesh Kumar N., Malik A., Mithal A., Hosmane S., Venkatesan A. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia. 2014;62:1982–1991. doi: 10.1002/glia.22719. PubMed DOI
Fournier A.J., Rajbhandari L., Shrestha S., Venkatesan A., Ramesh K.T. In vitro and in situ visualization of cytoskeletal deformation under load: Traumatic axonal injury. FASEB J. 2014;28:5277–5287. doi: 10.1096/fj.14-251942. PubMed DOI
Brown J.A., Sherrod S.D., Goodwin C.R., Brewer B., Yang L., Garbett K.A., Li D., McLean J.A., Wikswo J.P., Mirnics K. Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia. J. Neuroinflamm. 2014;11:1–12. doi: 10.1186/s12974-014-0183-6. PubMed DOI PMC
Sun M., Kaplan S.V., Gehringer R.C., Limbocker R.A., Johnson M.A. Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal. Chem. 2014;86:4151–4156. doi: 10.1021/ac5008927. PubMed DOI PMC
Lin X., Wang S., Yu X., Liu Z., Wang F., Li W.T., Cheng S.H., Dai Q., Shi P. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip. 2015;15:680–689. doi: 10.1039/C4LC01186D. PubMed DOI
Ruiz A., Joshi P., Mastrangelo R., Francolini M., Verderio C., Matteoli M. Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip. 2014;14:2860–2866. doi: 10.1039/c4lc00174e. PubMed DOI
Booth R., Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Ann. Biomed. Eng. 2014;42:2379–2391. doi: 10.1007/s10439-014-1086-5. PubMed DOI
Zhao Y., Abdelfattah A.S., Zhao Y., Ruangkittisakul A., Ballanyi K., Campbell R.E., Harrison D.J. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr. Biol. 2014;6:714–725. doi: 10.1039/c4ib00039k. PubMed DOI
Coquinco A., Kojic L., Wen W., Wang Y.T., Jeon N.L., Milnerwood A.J., Cynader M. A microfluidic based in vitro model of synaptic competition. Mol. Cell. Neurosci. 2014;60:43–52. doi: 10.1016/j.mcn.2014.03.001. PubMed DOI
Deleglise B., Magnifico S., Duplus E., Vaur P., Soubeyre V., Belle M., Vignes M., Viovy J.-L., Jacotot E., Peyrin J.-M., et al. B-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol. Commun. 2014;2:1–9. doi: 10.1186/s40478-014-0145-3. PubMed DOI PMC
Zhu L., Xu M., Yang M., Yang Y., Li Y., Deng J., Ruan L., Liu J., Du S., Liu X., et al. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel -structure and induces TDP-43 redistribution. Hum. Mol. Genet. 2014;23:6863–6877. doi: 10.1093/hmg/ddu409. PubMed DOI PMC
Chang T.C., Mikheev A.M., Huynh W., Monnat R.J., Rostomily R.C., Folch A. Parallel microfluidic chemosensitivity testing on individual slice cultures. Lab Chip. 2014;14:4540–4551. doi: 10.1039/C4LC00642A. PubMed DOI PMC
Mu X., Zheng W., Xiao L., Zhang W., Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip. 2013;13:1612–1618. doi: 10.1039/c3lc41342j. PubMed DOI
Baudoin R., Alberto G., Legendre A., Paullier P., Naudot M., Fleury M.J., Jacques S., Griscom L., Leclerc E. Investigation of expression and activity levels of primary rat hepatocyte detoxication genes under various flow rates and cell densities in microfluidic biochips. Biotechnol. Prog. 2014;30:401–410. doi: 10.1002/btpr.1857. PubMed DOI
Lee P.J., Hung P.J., Lee L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 2007;97:1340–1346. doi: 10.1002/bit.21360. PubMed DOI
Silva P.N., Green B.J., Altamentova S.M., Rocheleau J.V. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip. 2013;13:4374–4384. doi: 10.1039/c3lc50680k. PubMed DOI
Jun Y., Kim M.J., Hwang Y.H., Jeon E.A., Kang A.R., Lee S.-H., Lee D.Y. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials. 2013;34:8122–8130. doi: 10.1016/j.biomaterials.2013.07.079. PubMed DOI
Lee D., Wang Y., Mendoza-Elias J.E., Adewola A.F., Harvat T.A., Kinzer K., Gutierrez D., Qi M., Eddington D.T., Oberholzer J. Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging. Biomed. Microdevices. 2012;14:7–16. doi: 10.1007/s10544-011-9580-0. PubMed DOI PMC
Zhang M.Y., Lee P.J., Hung P.J., Johnson T., Lee L.P., Mofrad M.R.K. Microfluidic environment for high density hepatocyte culture. Biomed. Microdevices. 2008;10:117–121. doi: 10.1007/s10544-007-9116-9. PubMed DOI
Baudoin R., Griscom L., Prot J.M., Legallais C., Leclerc E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 2011;53:172–181. doi: 10.1016/j.bej.2010.10.007. DOI
Illa X., Vila S., Yeste J., Peralta C., Gracia-Sancho J., Villa R. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLoS ONE. 2014;9:e111864. doi: 10.1371/journal.pone.0111864. PubMed DOI PMC
Li C.Y., Stevens K.R., Schwartz R.E., Alejandro B.S., Huang J.H., Bhatia S.N. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A. 2014;20:2200–2212. doi: 10.1089/ten.tea.2013.0667. PubMed DOI PMC
Khetani S.R., Bhatia S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 2008;26:120–126. doi: 10.1038/nbt1361. PubMed DOI
Domansky K., Inman W., Serdy J., Dash A., Lim M.H.M., Griffith L.G. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 2010;10:51–58. doi: 10.1039/B913221J. PubMed DOI PMC
Jang K.-J., Suh K.-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10:36–42. doi: 10.1039/B907515A. PubMed DOI
Ju X., Li D., Gao N., Shi Q., Hou H. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Biotechnol. J. 2008;3:383–391. doi: 10.1002/biot.200700152. PubMed DOI
Huang H.-C., Chang Y.-J., Chen W.-C., Harn H.I.-C., Tang M.-J., Wu C.-C. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng. Part A. 2013;19:2024–2034. doi: 10.1089/ten.tea.2012.0605. PubMed DOI PMC
Ghazalli N., Mahdavi A., Feng T., Jin L., Kozlowski M.T., Hsu J., Riggs A.D., Tirrell D.A., Ku H.T. Postnatal pancreas of mice contains tripotent progenitors capable of giving rise to duct, acinar, and endocrine cells in vitro. Stem Cells Dev. 2015 doi: 10.1089/scd.2015.0007. PubMed DOI PMC
Sheng W., Ogunwobi O.O., Chen T., Zhang J., George T.J., Liu C., Fan Z.H. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014;14:89–98. doi: 10.1039/C3LC51017D. PubMed DOI PMC
Thege F.I., Lannin T.B., Saha T.N., Tsai S., Kochman M.L., Hollingsworth M.A., Rhim A.D., Kirby B.J. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: Characterization, optimization and downstream analysis. Lab Chip. 2014;14:1775–1784. doi: 10.1039/C4LC00041B. PubMed DOI
Rhim A.D., Thege F.I., Santana S.M., Lannin T.B., Saha T.N., Tsai S., Maggs L.R., Kochman M.L., Ginsberg G.G., Lieb J.G., et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146:647–651. doi: 10.1053/j.gastro.2013.12.007. PubMed DOI PMC
Kim H.J., Ingber D.E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 2013;5:1130–1140. doi: 10.1039/c3ib40126j. PubMed DOI
Esch M.B., Sung J.H., Yang J., Yu C., Yu J., March J.C., Shuler M.L. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomed. Microdevices. 2012;14:895–906. doi: 10.1007/s10544-012-9669-0. PubMed DOI
Kim S.H., Lee J.W., Choi I., Kim Y.C., Lee J.B., Sung J.H. A microfluidic device with 3D hydrogel villi scaffold to simulate intestinal absorption. J. Nanosci. Nanotechnol. 2013;13:7220–7228. doi: 10.1166/jnn.2013.8088. PubMed DOI
Legendre A., Baudoin R., Alberto G., Paullier P., Naudot M., Bricks T., Brocheton J., Jacques S., Cotton J., Leclerc E. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J. Pharm. Sci. 2013;102:3264–3276. doi: 10.1002/jps.23466. PubMed DOI
Kimura H., Yamamoto T., Sakai H., Sakai Y., Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8:741–746. doi: 10.1039/b717091b. PubMed DOI
Pasirayi G., Scott S.M., Islam M., O’Hare L., Bateson S., Ali Z. Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay. Talanta. 2014;129:491–498. doi: 10.1016/j.talanta.2014.06.020. PubMed DOI
Chang R., Emami K., Wu H., Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2:1–11. doi: 10.1088/1758-5082/2/4/045004. PubMed DOI
Chang R.C., Emami K., Jeevarajan A., Wu H., Sun W. Microprinting of liver micro-organ for drug metabolism study. Methods Mol. Biol. 2011;671:219–238. PubMed
Ramadan Q., Jafarpoorchekab H., Huang C., Silacci P., Carrara S., Koklü G., Ghaye J., Ramsden J., Ruffert C., Vergeres G., et al. NutriChip: Nutrition analysis meets microfluidics. Lab Chip. 2013;13:196–203. doi: 10.1039/C2LC40845G. PubMed DOI
Snouber L.C., Bunescu A., Naudot M., Legallais C., Brochot C., Dumas M.E., Elena-Herrmann B., Leclerc E. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol. Sci. 2013;132:8–20. doi: 10.1093/toxsci/kfs230. PubMed DOI
Dhumpa R., Truong T.M., Wang X., Roper M.G. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Integr. Biol. 2015;7:1061–1067. doi: 10.1039/C5IB00156K. PubMed DOI PMC
Lomasney A.R., Yi L., Roper M.G. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of langerhans on a microfluidic device. Anal. Chem. 2013;85:7919–7925. doi: 10.1021/ac401625g. PubMed DOI PMC
Lo J.F., Wang Y., Blake A., Yu G., Harvat T.A., Jeon H., Oberholzer J., Eddington D.T. Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal. Chem. 2012;84:1987–1993. doi: 10.1021/ac2030909. PubMed DOI PMC
Ferrell N., Ricci K.B., Groszek J., Marmerstein J.T., Fissell W.H. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol. Bioeng. 2012;109:797–803. doi: 10.1002/bit.24339. PubMed DOI PMC
McAuliffe G.J., Chang J.Y., Glahn R.P., Shuler M.L. Development of a gastrointestinal tract microscale cell culture analog to predict drug transport. Mol. Celullar Biomech. 2008;5:119–132. PubMed
Nourmohammadzadeh M., Lo J.F., Bochenek M., Mendoza-Elias J.E., Wang Q., Li Z., Zeng L., Qi M., Eddington D.T., Oberholzer J., et al. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: Effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal. Chem. 2013;85:11240–11249. doi: 10.1021/ac401297v. PubMed DOI PMC
Bricks T., Paullier P., Legendre A., Fleury M.J., Zeller P., Merlier F., Anton P.M., Leclerc E. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. Vitr. 2014;28:885–895. doi: 10.1016/j.tiv.2014.02.005. PubMed DOI
Kimura H., Ikeda T., Nakayama H., Sakai Y., Fujii T. An on-chip small intestine-liver model for pharmacokinetic studies. J. Lab. Autom. 2015;20:265–273. doi: 10.1177/2211068214557812. PubMed DOI
Matharu Z., Patel D., Gao Y., Haque A., Zhou Q., Revzin A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 2014;86:8865–8872. doi: 10.1021/ac502383e. PubMed DOI PMC
Zilberman Y., Sonkusale S.R. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens. Bioelectron. 2015;67:465–471. doi: 10.1016/j.bios.2014.09.006. PubMed DOI
Das R., Murphy R.G., Seibel E.J. Beyond isolated cells: Microfluidic transport of large tissue for pancreatic cancer diagnosis. Proc. SPIE. 2015;9320:1–29. PubMed PMC
Leonard E.F. Technical approaches toward ambulatory ESRD therapy. Seminars Dial. 2009;22:658–660. doi: 10.1111/j.1525-139X.2009.00660.x. PubMed DOI
Leonard E.F., Cortell S., Jones J. The path to wearable ultrafiltration and dialysis devices. Blood Purification. 2011;31:92–95. doi: 10.1159/000321846. PubMed DOI PMC
Kim H.J., Huh D., Hamilton G., Ingber D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–2174. doi: 10.1039/c2lc40074j. PubMed DOI
Huh D., Kim H.J., Fraser J.P., Shea D.E., Khan M., Bahinski A., Hamilton G.A., Ingber D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 2013;8:2135–2157. doi: 10.1038/nprot.2013.137. PubMed DOI
Legendre A., Jacques S., Dumont F., Cotton J., Paullier P., Fleury M.J., Leclerc E. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol. Vitr. 2014;28:1075–1087. doi: 10.1016/j.tiv.2014.04.008. PubMed DOI
Leclerc E., Hamon J., Claude I., Jellali R., Naudot M., Bois F. Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion. Cell Biol. Toxicol. 2015;31:173–185. doi: 10.1007/s10565-015-9302-0. PubMed DOI
Snouber L.C., Jacques S., Monge M., Legallais C., Leclerc E. Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips. Genomics. 2012;100:27–34. doi: 10.1016/j.ygeno.2012.05.001. PubMed DOI
Snouber L.C., Letourneur F., Chafey P., Broussard C., Monge M., Legallais C., Leclerc E. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol. Prog. 2011;28:474–484. doi: 10.1002/btpr.743. PubMed DOI
Snouber L.C., Aninat C., Grsicom L., Madalinski G., Brochot C., Poleni P.E., Razan F., Guillouzo C.G., Legallais C., Corlu A., et al. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol. Bioeng. 2013;110:597–608. doi: 10.1002/bit.24707. PubMed DOI
Mahler G.J., Esch M.B., Glahn R.P., Shuler M.L. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 2009;104:193–205. doi: 10.1002/bit.22366. PubMed DOI
Leclerc E., Hamon J., Legendre A., Bois F.Y. Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicol. Vitr. 2014;28:1230–1241. doi: 10.1016/j.tiv.2014.05.003. PubMed DOI
Jang K.-J., Mehr A.P., Hamilton G.A., McPartlin L.A., Chung S., Suh K.-Y., Ingber D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013;5:1119–1129. doi: 10.1039/c3ib40049b. PubMed DOI
Lang J.D., Berry S.M., Powers G.L., Beebe D.J., Alarid E.T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 2013;5:807–816. doi: 10.1039/c3ib20265h. PubMed DOI PMC
Kim B.J., Hannanta-anan P., Chau M., Kim Y.S., Swartz M.A., Wu M. Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE. 2013;8:e68422. doi: 10.1371/journal.pone.0068422. PubMed DOI PMC
Huang H.-Y., Wu T.-L., Huang H.-R., Li C.-J., Fu H.-T., Soong Y.-K., Lee M.-Y., Yao D.-J. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J. Lab. Autom. 2014;19:91–99. doi: 10.1177/2211068213486650. PubMed DOI
Tung C., Hu L., Fiore A.G., Ardon F., Hickman D.G., Gilbert R.O., Suarez S.S., Wu M. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc. Natl. Acad. Sci. USA. 2015;112:5431–5436. doi: 10.1073/pnas.1500541112. PubMed DOI PMC
Ferrie A.M., Wang C., Deng H., Fang Y. A label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrenergic receptor. Integr. Biol. 2013;5:1253–1261. doi: 10.1039/c3ib40112j. PubMed DOI
Ges I.A., Brindley R.L., Currie K.P.M., Baudenbacher F.J. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. Lab Chip. 2013;13:4663–4673. doi: 10.1039/c3lc50779c. PubMed DOI PMC
Pires N.M., Dong T. Detection of stress hormones by a microfluidic-integrated polycarbazole/fullerene photodetector; Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013. PubMed
Broccardo C.J., Schauer K.L., Kohrt W.M., Schwartz R.S., Murphy J.P., Prenni J.E. Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013;934:16–21. doi: 10.1016/j.jchromb.2013.06.031. PubMed DOI PMC
Kim J., Abdulwahab S., Choi K., Lafrenière N.M., Mudrik J.M., Gomaa H., Ahmado H., Behan L.-A., Casper R.F., Wheeler A.R. A microfluidic technique for quantification of steroids in core needle biopsies. Anal. Chem. 2015;87:4688–4695. doi: 10.1021/ac5043297. PubMed DOI
Kaushik A., Yndart A., Jayant R.D., Sagar V., Atluri V., Bhansali S., Nair M. Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients. Int. J. Nanomedicine. 2015;10:677–685. PubMed PMC
Selimovic A., Erkal J.L., Spence D.M., Martin R.S. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst. 2014;139:5686–5694. doi: 10.1039/C4AN01062K. PubMed DOI PMC
Shamsi M.H., Choi K., Ng A.H.C., Wheeler A.R. A digital microfluidic electrochemical immunoassay. Lab Chip. 2014;14:547–554. doi: 10.1039/C3LC51063H. PubMed DOI
Arends F., Sellner S., Seifert P., Gerland U., Rehberg M., Lieleg O. A microfluidics approach to study the accumulation of molecules at basal lamina interfaces. Lab Chip. 2015;15:3326–3334. doi: 10.1039/C5LC00561B. PubMed DOI
Zhu B., Smith J., Yarmush M.L., Nahmias Y., Kirby B.J., Murthy S.K. Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro. Tissue Eng. Part C Methods. 2013;19:765–773. doi: 10.1089/ten.tec.2012.0638. PubMed DOI PMC
Jean L., Yang L., Majumdar D., Gao Y., Shi M., Brewer B.M., Li D., Webb D.J. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh. Migr. 2014;8:460–467. doi: 10.4161/19336918.2014.983778. PubMed DOI PMC
Liu G., Smith K., Kaya T. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 doi: 10.1109/EMBC.2014.6943929. PubMed DOI
Rose D.P., Ratterman M.E., Griffin D.K., Hou L., Kelley-Loughnane N., Naik R.R., Hagen J.A., Papautsky I., Heikenfeld J. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2015;62:1457–1465. doi: 10.1109/TBME.2014.2369991. PubMed DOI
Li Y., Wang S., Huang R., Huang Z., Hu B., Zheng W., Yang G., Jiang X. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules. 2015;16:780–789. doi: 10.1021/bm501680s. PubMed DOI
Lo J.F., Brennan M., Merchant Z., Chen L., Guo S., Eddington D.T., DiPietro L.A. Microfluidic wound bandage: Localized oxygen modulation of collagen maturation. Wound Repair Regen. 2013;21:226–234. doi: 10.1111/wrr.12021. PubMed DOI PMC
Berthier E., Young E.W.K., Beebe D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip. 2012;12:1224–1237. doi: 10.1039/c2lc20982a. PubMed DOI
Zheng W., Jiang B., Wang D., Zhang W., Wang Z., Jiang X. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip. 2012;12:3441–3450. doi: 10.1039/c2lc40173h. PubMed DOI
Zheng W., Jiang B., Hao Y., Zhao Y., Zhang W., Jiang X. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication. 2014;6:045004:1–045004:11. doi: 10.1088/1758-5082/6/4/045004. PubMed DOI
Nalayanda D.D., Wang Q., Fulton W.B., Wang T.-H., Abdullah F. Engineering an artificial alveolar-capillary membrane: A novel continuously perfused model within microchannels. J. Pediatr. Surg. 2010;45:45–51. doi: 10.1016/j.jpedsurg.2009.10.008. PubMed DOI PMC
Nalayanda D.D., Puleo C.M., Fulton W.B., Wang T.-H., Abdullah F. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Exp. Lung Res. 2007;33:321–335. doi: 10.1080/01902140701557754. PubMed DOI
Nichols J.E., Niles J.A., Vega S.P., Argueta L.B., Eastaway A., Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp. Biol. Med. 2014;239:1135–1169. doi: 10.1177/1535370214536679. PubMed DOI
Zeng L., Qiu L., Yang X., Zhou Y., Du J., Wang H., Sun J., Yang C., Jiang J. Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system. Cell Biol. Int. 2015 doi: 10.1002/cbin.10513. PubMed DOI
Hoganson D.M., Pryor H.I., II, Bassett E.K., Spool I.D., Vacanti J.P. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab Chip. 2011;11:700–707. doi: 10.1039/C0LC00158A. PubMed DOI
Kniazeva T., Hsiao J.C., Charest J.L., Borenstein J.T. A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed. Microdevices. 2011;13:315–323. doi: 10.1007/s10544-010-9495-1. PubMed DOI
Kniazeva T., Epshteyn A.A., Hsiao J.C., Kim E.S., Kolachalama V.B., Charest J.L., Borenstein J.T. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device. Lab Chip. 2012;12:1686–1695. doi: 10.1039/c2lc21156d. PubMed DOI PMC
Kovach K.M., LaBarbera M.A., Moyer M.C., Cmolik B.L., van Lunteren E., Sen Gupta A., Capadona J.R., Potkay J.A. In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab Chip. 2015;15:1366–1375. doi: 10.1039/C4LC01284D. PubMed DOI
Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2005;2:599–605. doi: 10.1038/nmeth777. PubMed DOI PMC
Booth R., Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB) Lab Chip. 2012;12:1784–1792. doi: 10.1039/c2lc40094d. PubMed DOI
Shintu L., Baudoin R., Navratil V., Prot J.-M., Pontoizeau C., Defernez M., Blaise B.J., Domange C., Péry A.R., Toulhoat P., et al. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal. Chem. 2012;84:1840–1848. doi: 10.1021/ac2011075. PubMed DOI
Baudoin R., Legendre A., Jacques S., Cotton J., Bois F., Leclerc E. Evaluation of a liver microfluidic biochip to predict in vivo clearances of seven drugs in rats. J. Pharm. Sci. 2014;103:706–718. doi: 10.1002/jps.23796. PubMed DOI
Van Midwoud P.M., Verpoorte E., Groothuis G.M.M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 2011;3:509–521. doi: 10.1039/c0ib00119h. PubMed DOI
Russell S.J., El-Khatib F.H., Sinha M., Magyar K.L., McKeon K., Goergen L.G., Balliro C., Hillard M.A., Nathan D.M., Damiano E.R. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 2014;371:313–325. doi: 10.1056/NEJMoa1314474. PubMed DOI PMC
Xu S., Zhang Y., Jia L., Mathewson K.E., Jang K.-I., Kim J., Fu H., Huang X., Chava P., Wang R., et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 2014;344:70–74. doi: 10.1126/science.1250169. PubMed DOI
Sonner Z., Wilder E., Heikenfeld J., Kasting G., Beyette F., Swaile D., Sherman F., Joyce J., Hagen J., Kelley-Loughnane N., et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015 doi: 10.1063/1.4921039. PubMed DOI PMC
Scannell J.W., Blanckley A., Boldon H., Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012;11:191–200. PubMed
Esch M.B., Mahler G.J., Stokol T., Shuler M.L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip. 2014;14:3081–3092. doi: 10.1039/C4LC00371C. PubMed DOI PMC
Shuler M.L. Modeling life. Ann. Biomed. Eng. 2012;40:1399–1407. doi: 10.1007/s10439-012-0567-7. PubMed DOI
Akagi T., Kato K., Kobayashi M., Kosaka N., Ochiya T., Ichiki T. On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells. PLoS ONE. 2015;10:e0123603. doi: 10.1371/journal.pone.0123603. PubMed DOI PMC
Huang N.-T., Chen W., Oh B.-R., Cornell T.T., Shanley T.P., Fu J., Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093–4101. doi: 10.1039/c2lc40619e. PubMed DOI PMC
Esch M.B., King T.L., Shuler M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 2011;13:55–72. doi: 10.1146/annurev-bioeng-071910-124629. PubMed DOI
Vunjak-Novakovic G., Bhatia S., Chen C., Hirschi K. HeLiVa platform: Integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res. Ther. 2013 doi: 10.1186/scrt369. PubMed DOI PMC
Prot J.M., Maciel L., Bricks T., Merlier F., Cotton J., Paullier P., Bois F.Y., Leclerc E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 2014;111:2027–2040. doi: 10.1002/bit.25232. PubMed DOI
Maschmeyer I., Lorenz A.K., Schimek K., Hasenberg T., Ramme A.P., Hübner J., Lindner M., Drewell C., Bauer S., Thomas A., et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15:2688–2699. doi: 10.1039/C5LC00392J. PubMed DOI
Maschmeyer I., Hasenberg T., Jaenicke A., Lindner M., Lorenz A.K., Zech J., Garbe L.-A., Sonntag F., Hayden P., Ayehunie S., et al. Chip-based human liver–intestine and liver–skin co-cultures—A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 2015 doi: 10.1016/j.ejpb.2015.03.002. PubMed DOI PMC
Frey O., Misun P.M., Fluri D.A., Hengstler J.G., Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 2014;5:1–11. PubMed
Kim J.-Y., Fluri D.A., Kelm J.M., Hierlemann A., Frey O. 96-Well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J. Lab. Autom. 2015;20:274–282. doi: 10.1177/2211068214564056. PubMed DOI
Kim J.-Y., Fluri D.A., Marchan R., Boonen K., Mohanty S., Singh P., Hammad S., Landuyt B., Hengstler J.G., Kelm J.M., et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J. Biotechnol. 2015;205:24–35. doi: 10.1016/j.jbiotec.2015.01.003. PubMed DOI
Sung J.H., Kam C., Shuler M.L. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip. 2010;10:446–455. doi: 10.1039/b917763a. PubMed DOI
Sung J.H., Srinivasan B., Esch M.B., McLamb W.T., Bernabini C., Shuler M.L., Hickman J.J. Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 2014;239:1225–1239. doi: 10.1177/1535370214529397. PubMed DOI PMC
Wikswo J.P., Curtis E.L., Eagleton Z.E., Evans B.C., Kole A., Hofmeister L.H., Matloff W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 2013;13:3496–3511. doi: 10.1039/c3lc50243k. PubMed DOI PMC
Huh D., Hamilton G.A., Ingber D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–754. doi: 10.1016/j.tcb.2011.09.005. PubMed DOI PMC
Dance A. Correction for Dance, News Feature: Building benchtop human models. Proc. Natl. Acad. Sci. USA. 2015;112:6773–6775. doi: 10.1073/pnas.1508841112. PubMed DOI PMC
Chen Y.-C., Allen S.G., Ingram P.N., Buckanovich R., Merajver S.D., Yoon E. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 2015;5:1–13. doi: 10.1038/srep09980. PubMed DOI PMC
Lee H., Park W., Ryu H., Jeon N.L. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasationa. Biomicrofluidics. 2014 doi: 10.1063/1.4894595. PubMed DOI PMC
Mattei F., Schiavoni G., De Ninno A., Lucarini V., Sestili P., Sistigu A., Fragale A., Sanchez M., Spada M., Gerardino A., et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 2014;11:337–346. doi: 10.3109/1547691X.2014.891677. PubMed DOI
Zhang Y., Zhou L., Qin L. High-throughput 3D cell invasion chip enables accurate cancer metastatic assays. J. Am. Chem. Soc. 2014;136:15257–15262. doi: 10.1021/ja5072114. PubMed DOI PMC
Zou H., Yue W., Yu W.-K., Liu D., Fong C.-C., Zhao J., Yang M. Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal. Chem. 2015;87:7098–7108. doi: 10.1021/acs.analchem.5b00873. PubMed DOI
Riahi R., Yang Y.L., Kim H., Jiang L., Wong P.K., Zohar Y. A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics. 2014;8:024103. doi: 10.1063/1.4868301. PubMed DOI PMC
Wang X.-Y., Pei Y., Xie M., Jin Z.-H., Xiao Y.-S., Wang Y., Zhang L.-N., Li Y., Huang W.-H. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells. Lab Chip. 2015;15:1178–1187. doi: 10.1039/C4LC00973H. PubMed DOI
Casavant B.P., Strotman L.N., Tokar J.J., Thiede S.M., Traynor A.M., Ferguson J.S., Lang J.M., Beebe D. Paired diagnostic and pharmacodynamic analysis of rare non-small cell lung cancer cells enabled by the VerIFAST platform. Lab Chip. 2014;14:99–105. doi: 10.1039/C3LC50912E. PubMed DOI PMC
Park J.-M., Kim M.S., Moon H.-S., Yoo C.E., Park D., Kim Y.J., Han K.-Y., Lee J.-Y., Oh J.H., Kim S.S., et al. Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc. Anal. Chem. 2014;86:3735–3742. doi: 10.1021/ac403456t. PubMed DOI
Watanabe M., Serizawa M., Sawada T., Takeda K., Takahashi T., Yamamoto N., Koizumi F., Koh Y. A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood. J. Transl. Med. 2014;12:1–12. doi: 10.1186/1479-5876-12-143. PubMed DOI PMC
Yu I.F., Yu Y.H., Chen L.Y., Fan S.K., Chou H.Y.E., Yang J.T. A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip. 2014;14:3621–3628. doi: 10.1039/C4LC00502C. PubMed DOI
Galletti G., Sung M.S., Vahdat L.T., Shah M.A., Santana S.M., Altavilla G., Kirby B.J., Giannakakou P. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 2014;14:147–156. doi: 10.1039/C3LC51039E. PubMed DOI PMC
Sarioglu A.F., Aceto N., Kojic N., Donaldson M.C., Zeinali M., Hamza B., Engstrom A., Zhu H., Sundaresan T.K., Miyamoto D.T., et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods. 2015;12:685–691. doi: 10.1038/nmeth.3404. PubMed DOI PMC
Lu Y.-T., Zhao L., Shen Q., Garcia M.A., Wu D., Hou S., Song M., Xu X., OuYang W.-H., OuYang W.W.-L., et al. NanoVelcro chip for CTC enumeration in prostate cancer patients. Methods. 2013;64:144–152. doi: 10.1016/j.ymeth.2013.06.019. PubMed DOI PMC
Huang M.-Y., Liu H.-C., Yen L.-C., Chang J.-Y., Huang J.-J., Wang J.-Y., Lin S.-R. Decreasing relapse in colorectal cancer patients treated with cetuximab by using the activating KRAS detection chip. Tumor Biol. 2014;35:9639–9647. doi: 10.1007/s13277-014-2263-8. PubMed DOI
Xue P., Wu Y., Guo J., Kang Y. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed. Microdevices. 2015 doi: 10.1007/s10544-015-9945-x. PubMed DOI
Zhang Z., Shiratsuchi H., Lin J., Chen G., Reddy R.M., Azizi E., Fouladdel S., Chang A.C., Lin L., Jiang H., et al. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget. 2014;5:12383–12397. doi: 10.18632/oncotarget.2592. PubMed DOI PMC
Huang T., Jia C.-P., Jun-Yang, Sun W.-J., Wang W.-T., Zhang H.-L., Cong H., Jing F.-X., Mao H.-J., Jin Q.-H., et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens. Bioelectron. 2014;51:213–218. doi: 10.1016/j.bios.2013.07.044. PubMed DOI
Ying L., Zhu Z., Xu Z., He T., Li E., Guo Z., Liu F., Jiang C., Wang Q. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLoS ONE. 2015;10:e0129593. doi: 10.1371/journal.pone.0129593. PubMed DOI PMC
Ruppen J., Wildhaber F.D., Strub C., Hall S.R.R., Schmid R.A., Geiser T., Guenat O.T. Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip. 2015;15:3076–3085. doi: 10.1039/C5LC00454C. PubMed DOI
Jeon J.S., Zervantonakis I.K., Chung S., Kamm R.D., Charest J.L. In vitro model of tumor cell extravasation. PLoS ONE. 2013;8:e56910. doi: 10.1371/journal.pone.0056910. PubMed DOI PMC
Bersini S., Jeon J.S., Dubini G., Arrigoni C., Chung S., Charest J.L., Moretti M., Kamm R.D. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35:2454–2461. doi: 10.1016/j.biomaterials.2013.11.050. PubMed DOI PMC
Jeon J.S., Bersini S., Gilardi M., Dubini G., Charest J.L., Moretti M., Kamm R.D. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA. 2015;112:214–219. doi: 10.1073/pnas.1417115112. PubMed DOI PMC
Wikswo J.P., Block F.E., Cliffel D.E., Goodwin C.R., Marasco C.C., Markov D.A., McLean D.L., McLean J.A., McKenzie J.R., Reiserer R.S., et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 2013;60:682–690. doi: 10.1109/TBME.2013.2244891. PubMed DOI PMC
Hayes D.F., Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Miller M.C., Matera J., Allard W.J., Doyle G.V., Terstappen L.W.W.M. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 2006;12:4218–4224. doi: 10.1158/1078-0432.CCR-05-2821. PubMed DOI
Role of Peptides in Diagnostics