Role of Peptides in Diagnostics

. 2021 Aug 17 ; 22 (16) : . [epub] 20210817

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445532

The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.

Zobrazit více v PubMed

Andresen H., Bier F.F. Peptide microarrays for serum antibody diagnostics. Methods Mol. Biol. 2009;509:123–134. PubMed

Vanniasinkam T., Barton M.D., Heuzenroeder M.W. B-Cell epitope mapping of the VapA protein of Rhodococcus equi: Implications for early detection of R. equi disease in foals. J. Clin. Microbiol. 2001;39:1633–1637. doi: 10.1128/JCM.39.4.1633-1637.2001. PubMed DOI PMC

Pellois J.P., Zhou X., Srivannavit O., Zhou T., Gulari E., Gao X. Individually addressable parallel peptide synthesis on microchips. Nat. Biotechnol. 2002;20:922–926. doi: 10.1038/nbt723. PubMed DOI

Carter J.M. Epitope mapping of a protein using the Geysen (PEPSCAN) procedure. Methods Mol. Biol. 1994;36:207–223. PubMed

Van der Zee R., van Eden W., Meloen R.H., Noordzij A., van Embden J.D. Efficient mapping and characterization of a T cell epitope by the simultaneous synthesis of multiple peptides. Eur. J. Immunol. 1989;19:43–47. PubMed

Geysen H.M., Rodda S.J., Mason T.J., Tribbick G., Schoofs P.G. Strategies for epitope analysis using peptide synthesis. J. Immunol. Methods. 1987;102:259–274. doi: 10.1016/0022-1759(87)90085-8. PubMed DOI

Geysen H.M., Rodda S.J., Mason T.J. Ciba Foundation Symposium 119—Synthetic Peptides as Antigens: Synthetic Peptides as Antigens, Volume 119. Ciba Foundation; Glendale, CA, USA: 2007. The delineation of peptides able to mimic assembled epitopes. PubMed

Geysen H.M., Barteling S.J., Meloen R.H. Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci. USA. 1985;82:178–182. doi: 10.1073/pnas.82.1.178. PubMed DOI PMC

Geysen H.M., Meloen R.H., Barteling S.J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA. 1984;81:3998–4002. doi: 10.1073/pnas.81.13.3998. PubMed DOI PMC

Meloen R.H., Langedijk J.P., Langeveld J.P. Synthetic peptides for diagnostic use. Vet. Q. 1997;19:122–126. doi: 10.1080/01652176.1997.9694755. PubMed DOI

Barlow D.J., Edwards M.S., Thornton J.M. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322:747–748. doi: 10.1038/322747a0. PubMed DOI

Songprakhon P., Thaingtamtanha T., Limjindaporn T., Puttikhunt C., Srisawat C., Luangaram P., Dechtawewat T., Uthaipibull C., Thongsima S., Yenchitsomanus P.T., et al. Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Sci. Rep. 2020;10:12933. doi: 10.1038/s41598-020-69515-9. PubMed DOI PMC

Bozovičar K., Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int. J. Mol. Sci. 2019;21:215. doi: 10.3390/ijms21010215. PubMed DOI PMC

Brown L., Westby M., Souberbielle B.E., Szawlowski P.W., Kemp G., Hay P., Dalgleish A.G. Optimisation of a peptide-based indirect ELISA for the detection of antibody in the serum of HIV-1 seropositive patients. J. Immunol. Methods. 1997;200:79–88. doi: 10.1016/S0022-1759(96)00192-5. PubMed DOI

Engvall E., Perlmann P. Enzyme-linked Immunosorbent Assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–874. doi: 10.1016/0019-2791(71)90454-X. PubMed DOI

Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI

Ekins R., Chu F., Micallef J. High specific activity chemiluminescent and fluorescent markers: Their potential application to high sensitivity and ‘multi-analyte’ immunoassays. J. Biolumin. Chemilumin. 1989;4:59–78. doi: 10.1002/bio.1170040113. PubMed DOI

Angenendt P. Progress in protein and antibody microarray technology. Drug Discov. Today. 2005;10:503–511. doi: 10.1016/S1359-6446(05)03392-1. PubMed DOI

Newman J.D., Setford S.J. Enzymatic biosensors. Mol. Biotechnol. 2006;32:249–268. doi: 10.1385/MB:32:3:249. PubMed DOI

Bhalla N., Jolly P., Formisano N., Estrela P. Introduction to biosensors. Essays Biochem. 2016;60:1–8. PubMed PMC

Sachdeva S., Davis R.W., Saha A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2020;8:602659. doi: 10.3389/fbioe.2020.602659. PubMed DOI PMC

Pandey S., Dvorakova M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets. 2020;20:25. doi: 10.2174/1871530319666190626143832. PubMed DOI PMC

Perestrelo A.R., Águas A.C., Rainer A., Forte G. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. Sensors. 2015;15:31142–31170. doi: 10.3390/s151229848. PubMed DOI PMC

Vidova V., Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta. 2017;964:7–23. doi: 10.1016/j.aca.2017.01.059. PubMed DOI

Gresch S.C., Mutch L.A., Janecek J.L., Hegstad-Davies R.L., Graham M.L. Cross-validation of commercial enzyme-linked immunosorbent assay and radioimmunoassay for porcine C-peptide concentration measurements in non-human primate serum. Xenotransplantation. 2017;24:e12320. doi: 10.1111/xen.12320. PubMed DOI

Graham M.L., Gresch S.C., Hardy S.K., Mutch L.A., Janecek J.L., Hegstad-Davies R.L. Evaluation of commercial ELISA and RIA for measuring porcine C-peptide: Implications for research. Xenotransplantation. 2015;22:62–69. doi: 10.1111/xen.12143. PubMed DOI

Lau M.S., Mooney P.D., White W.L., Rees M.A., Wong S.H., Hadjivassiliou M., Green P.H.R., Lebwohl B., Sanders D.S. Office-Based Point of Care Testing (IgA/IgG-Deamidated Gliadin Peptide) for Celiac Disease. Am. J. Gastroenterol. 2018;113:1238–1246. doi: 10.1038/s41395-018-0143-3. PubMed DOI

Liu M., Zhao G., Wei B.F. Attenuated serum vasoactive intestinal peptide concentrations are correlated with disease severity of non-traumatic osteonecrosis of femoral head. J. Orthop. Surg. Res. 2021;16:325. doi: 10.1186/s13018-021-02486-3. PubMed DOI PMC

De-Simone S.G., Gomes L.R., Napoleão-Pêgo P., Lechuga G.C., de Pina J.S., Epitope F.R.D. Mapping of the Diphtheria Toxin and Development of an ELISA-Specific Diagnostic Assay. Vaccines. 2021;9:313. doi: 10.3390/vaccines9040313. PubMed DOI PMC

Gupta K., Brown L., Bakshi R.K., Press C.G., Chi X., Gorwitz R.J., Papp J.R., Geisler W.M. Performance of Chlamydia trachomatis OmcB Enzyme-Linked Immunosorbent Assay in Serodiagnosis of Chlamydia trachomatis Infection in Women. J. Clin. Microbiol. 2018;56:e00275-18. doi: 10.1128/JCM.00275-18. PubMed DOI PMC

Rahman K.S., Darville T., Russell A.N., O’Connell C.M., Wiesenfeld H.C., Hillier S.L., Chowdhury E.U., Juan Y.C., Kaltenboeck B. Discovery of Human-Specific Immunodominant Chlamydia trachomatis B Cell Epitopes. Msphere. 2018;3:e00246-18. doi: 10.1128/mSphere.00246-18. PubMed DOI PMC

Rahman K.S., Darville T., Russell A.N., O’Connell C.M., Wiesenfeld H.C., Hillier S.L., Lee D.E., Kaltenboeck B. Comprehensive Molecular Serology of Human Chlamydia trachomatis Infections by Peptide Enzyme-Linked Immunosorbent Assays. Msphere. 2018;3:e00253-18. doi: 10.1128/mSphere.00253-18. PubMed DOI PMC

Rahman K.S., Darville T., Wiesenfeld H.C., Hillier S.L., Kaltenboeck B. Mixed Chlamydia trachomatis Peptide Antigens Provide a Specific and Sensitive Single-Well Colorimetric Enzyme-Linked Immunosorbent Assay for Detection of Human Anti-C. trachomatis Antibodies. Msphere. 2018;3:e00484-18. doi: 10.1128/mSphere.00484-18. PubMed DOI PMC

Van Kruiningen H.J., Helal Z., Leroyer A., Garmendia A., Gower-Rousseau C. ELISA Serology for Antibodies Against Chlamydia trachomatis in Crohn’s Disease. Gastroenterol. Res. 2017;10:334–338. doi: 10.14740/gr922w. PubMed DOI PMC

Mosadeghi P., Heydari-Zarnagh H. Development and Evaluation of a Novel ELISA for Detection of Antibodies against HTLV-I Using Chimeric Peptides. Iran. J. Allergy Asthma Immunol. 2018;17:144–150. PubMed

Li Y., Lai D.Y., Lei Q., Xu Z.W., Wang F., Hou H., Chen L., Wu J., Ren Y., Ma M.L., et al. Systematic evaluation of IgG responses to SARS-CoV-2 spike protein-derived peptides for monitoring COVID-19 patients. Cell Mol. Immunol. 2021;18:621–631. doi: 10.1038/s41423-020-00612-5. PubMed DOI PMC

Liu J., Cui D., Jiang Y., Li Y., Liu Z., Tao L., Zhao Q., Diao A. Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int. J. Biol. Macromol. 2021;166:884–892. doi: 10.1016/j.ijbiomac.2020.10.245. PubMed DOI

Sahin D., Taflan S.O., Yartas G., Ashktorab H., Smoot D.T. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library. Asian Pac. J. Cancer Prev. 2018;19:927–932. PubMed PMC

Liu Y., Xia X., Wang Y., Li X., Zhou G., Liang H., Feng G., Zheng C. Screening and identification of a specific peptide for targeting hypoxic hepatoma cells. Mol. Cell Probes. 2016;30:246–253. doi: 10.1016/j.mcp.2016.06.007. PubMed DOI

Zhang W.J., Sui Y.X., Budha A., Zheng J.B., Sun X.J., Hou Y.C., Wang T.D., Lu S.Y. Affinity peptide developed by phage display selection for targeting gastric cancer. World J. Gastroenterol. 2012;18:2053–2060. doi: 10.3748/wjg.v18.i17.2053. PubMed DOI PMC

Galvis-Jiménez J.M., Curtidor H., Patarroyo M.A., Monterrey P., Ramírez-Clavijo S.R. Mammaglobin peptide as a novel biomarker for breast cancer detection. Cancer Biol. Ther. 2013;14:327–332. doi: 10.4161/cbt.23614. PubMed DOI PMC

Wettergren A., Wøjdemann M., Holst J.J. The inhibitory effect of glucagon-like peptide-1 (7-36)amide on antral motility is antagonized by its N-terminally truncated primary metabolite GLP-1 (9-36)amide. Peptides. 1998;19:877–882. doi: 10.1016/S0196-9781(98)00020-5. PubMed DOI

Wewer Albrechtsen N.J., Asmar A., Jensen F., Törang S., Simonsen L., Kuhre R.E., Asmar M., Veedfald S., Plamboeck A., Knop F.K., et al. A sandwich ELISA for measurement of the primary glucagon-like peptide-1 metabolite. Am. J. Physiol. Endocrinol. Metab. 2017;313:E284–E291. doi: 10.1152/ajpendo.00005.2017. PubMed DOI

Wewer Albrechtsen N.J., Bak M.J., Hartmann B., Christensen L.W., Kuhre R.E., Deacon C.F., Holst J.J. Stability of glucagon-like peptide 1 and glucagon in human plasma. Endocr. Connect. 2015;4:50–57. doi: 10.1530/EC-14-0126. PubMed DOI PMC

Wenzel K., Schulze-Rothe S., Müller J., Wallukat G., Haberland A. Difference between beta1-adrenoceptor autoantibodies of human and animal origin-Limitations detecting beta1-adrenoceptor autoantibodies using peptide based ELISA technology. PLoS ONE. 2018;13:e0192615. doi: 10.1371/journal.pone.0192615. PubMed DOI PMC

Lv R., Chen Y., Xia N., Liang Y., He Q., Li M., Qi Z., Lu Y., Zhao S. Development of a double-antibody sandwich ELISA for rapid detection to C-peptide in human urine. J. Pharm. Biomed. Anal. 2019;162:179–184. doi: 10.1016/j.jpba.2018.07.049. PubMed DOI

Velumani S., Ho H.T., He F., Musthaq S., Prabakaran M., Kwang J. A novel peptide ELISA for universal detection of antibodies to human H5N1 influenza viruses. PLoS ONE. 2011;6:e20737. doi: 10.1371/journal.pone.0020737. PubMed DOI PMC

Tiwari R.P., Jain A., Khan Z., Kumar P., Bhrigu V., Bisen P.S. Designing of novel antigenic peptide cocktail for the detection of antibodies to HIV-1/2 by ELISA. J. Immunol. Methods. 2013;387:157–166. doi: 10.1016/j.jim.2012.10.009. PubMed DOI

Van Burgel N.D., Brandenburg A., Gerritsen H.J., Kroes A.C., van Dam A.P. High sensitivity and specificity of the C6-peptide ELISA on cerebrospinal fluid in Lyme neuroborreliosis patients. Clin. Microbiol. Infect. 2011;17:1495–1500. doi: 10.1111/j.1469-0691.2011.03459.x. PubMed DOI

Davis J.B. ELISA for Monitoring Nerve Growth Factor. Methods Mol. Biol. 2017;1606:141–147. PubMed

Shrock E., Fujimura E., Kula T., Timms R.T., Lee I.H., Leng Y., Robinson M.L., Sie B.M., Li M.Z., Chen Y., et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020;370:eabd4250. doi: 10.1126/science.abd4250. PubMed DOI PMC

Zhang Y., Yang Z., Tian S., Li B., Feng T., He J., Jiang M., Tang X., Mei S., Li H., et al. A newly identified linear epitope on non-RBD region of SARS-CoV-2 spike protein improves the serological detection rate of COVID-19 patients. BMC Microbiol. 2021;21:194. doi: 10.1186/s12866-021-02241-y. PubMed DOI PMC

Ma Y., Liu F., Lin T., Chen L., Jiang A., Tian G., Nielsen M., Wang M. Large-scale identification of T cell epitopes derived from SARS-CoV-2 for the development of peptide vaccines against COVID-19. J. Infect Dis. 2021 doi: 10.1093/infdis/jiab324. PubMed DOI

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC

Dong Y., Zhou H., Li M., Zhang Z., Guo W., Yu T., Gui Y., Wang Q., Zhao L., Luo S., et al. A novel simple scoring model for predicting severity of patients with SARS-CoV-2 infection. Transbound Emerg. Dis. 2020;67:2823–2829. doi: 10.1111/tbed.13651. PubMed DOI PMC

Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J. Thromb. Haemost. 2020;18:1324–1329. doi: 10.1111/jth.14859. PubMed DOI PMC

Petruccioli E., Fard S.N., Navarra A., Petrone L., Vanini V., Cuzzi G., Gualano G., Pierelli L., Bertoletti A., Nicastri E., et al. Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection. J. Transl. Med. 2021;19:272. doi: 10.1186/s12967-021-02938-8. PubMed DOI PMC

Wrenn F.R., Jr., Good M.L., Handler P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science. 1951;113:525–527. doi: 10.1126/science.113.2940.525. PubMed DOI

Ter-Pogossian M.M., Phelps M.E., Hoffman E.J., Mullani N.A. A positron-emission transaxial tomograph for nuclear imaging (PETT) Radiology. 1975;114:89–98. doi: 10.1148/114.1.89. PubMed DOI

Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investig. Radiol. 1987;22:360–371. doi: 10.1097/00004424-198705000-00002. PubMed DOI

Patz E.F., Jr., Lowe V.J., Hoffman J.M., Paine S.S., Burrowes P., Coleman R.E., Goodman P.C. Focal pulmonary abnormalities: Evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology. 1993;188:487–490. doi: 10.1148/radiology.188.2.8327702. PubMed DOI

Signore A., Mather S.J., Piaggio G., Malviya G., Dierckx R.A. Molecular imaging of inflammation/infection: Nuclear medicine and optical imaging agents and methods. Chem. Rev. 2010;110:3112–3145. doi: 10.1021/cr900351r. PubMed DOI

Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–79. doi: 10.1126/science.179.4068.77. PubMed DOI

Narayanan S., Kunz P.L. Role of somatostatin analogues in the treatment of neuroendocrine tumors. J. Natl. Compr. Cancer Netw. 2015;13:109–117. doi: 10.6004/jnccn.2015.0012. PubMed DOI

Patel Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999;20:157–198. doi: 10.1006/frne.1999.0183. PubMed DOI

Anzola L.K., Glaudemans A., Dierckx R., Martinez F.A., Moreno S., Signore A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: A systematic review. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2496–2513. doi: 10.1007/s00259-019-04489-z. PubMed DOI PMC

Sosabowsky J., Melendez-Alafort L., Mather S. Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases. Q. J. Nucl. Med. 2003;47:223–237. PubMed

Rambaldi P.F., Cuccurullo V., Briganti V., Mansi L. The present and future role of (111)In pentetreotide in the PET era. Q. J. Nucl. Med. Mol. Imaging. 2005;49:225–235. PubMed

Cascini G.L., Cuccurullo V., Tamburrini O., Rotondo A., Mansi L. Peptide imaging with somatostatin analogues: More than cancer probes. Curr. Radiopharm. 2013;6:36–40. doi: 10.2174/1874471011306010006. PubMed DOI

Patel M., Tena I., Jha A., Taieb D., Pacak K. Somatostatin Receptors and Analogs in Pheochromocytoma and Paraganglioma: Old Players in a New Precision Medicine World. Front. Endocrinol. (Lausanne) 2021;12:625312. doi: 10.3389/fendo.2021.625312. PubMed DOI PMC

Yamaga L.Y.I., Cunha M.L., Neto G.C.C., Garcia M.R.T., Yang J.H., Camacho C.P., Wagner J., Funari M.B.G. (68)Ga-DOTATATE PET/CT in recurrent medullary thyroid carcinoma: A lesion-by-lesion comparison with (111)In-octreotide SPECT/CT and conventional imaging. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1695–1701. doi: 10.1007/s00259-017-3701-9. PubMed DOI

Johnbeck C.B., Knigge U., Loft A., Berthelsen A.K., Mortensen J., Oturai P., Langer S.W., Elema D.R., Kjaer A. Head-to-Head Comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J. Nucl. Med. 2017;58:451–457. doi: 10.2967/jnumed.116.180430. PubMed DOI

Signore A., Annovazzi A., Barone R., Bonanno E., D’Alessandria C., Chianelli M., Mather S.J., Bottoni U., Panetta C., Innocenzi D., et al. 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumor-infiltrating lymphocytes in melanoma lesions: A validation study. J. Nucl. Med. 2004;45:1647–1652. PubMed

Di Gialleonardo V., Signore A., Willemsen A.T., Sijbesma J.W., Dierckx R.A., de Vries E.F. Pharmacokinetic modelling of N-(4-[(18)F]fluorobenzoyl)interleukin-2 binding to activated lymphocytes in an xenograft model of inflammation. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1551–1560. doi: 10.1007/s00259-012-2176-y. PubMed DOI PMC

Khanapur S., Yong F.F., Hartimath S.V., Jiang L., Ramasamy B., Cheng P., Narayanaswamy P., Goggi J.L., Robins E.G. An Improved Synthesis of N-(4-[(18)F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models. Molecules. 2021;26:1728. doi: 10.3390/molecules26061728. PubMed DOI PMC

Van der Veen E.L., Antunes I.F., Maarsingh P., Hessels-Scheper J., Zijlma R., Boersma H.H., Jorritsma-Smit A., Hospers G.A.P., de Vries E.G.E., Hooge M.N.L., et al. Clinical-grade N-(4-[(18)F]fluorobenzoyl)-interleukin-2 for PET imaging of activated T-cells in humans. EJNMMI Radiopharm. Chem. 2019;4:15. doi: 10.1186/s41181-019-0062-7. PubMed DOI PMC

Van de Donk P.P., Wind T.T., Hooiveld-Noeken J.S., van der Veen E.L., Glaudemans A., Diepstra A., Jalving M., de Vries E.G.E., de Vries E.F.J., Hospers G.A.P. Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05407-y. PubMed DOI PMC

Grauer L.S., Lawler K.D., Marignac J.L., Kumar A., Goel A.S., Wolfert R.L. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM’ protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 1998;58:4787–4789. PubMed

Mannweiler S., Amersdorfer P., Trajanoski S., Terrett J.A., King D., Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 2009;15:167–172. doi: 10.1007/s12253-008-9104-2. PubMed DOI

Afshar-Oromieh A., Haberkorn U., Eder M., Eisenhut M., Zechmann C.M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: Comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1085–1086. doi: 10.1007/s00259-012-2069-0. PubMed DOI

Grubmüller B., Baltzer P., Hartenbach S., D’Andrea D., Helbich T.H., Haug A.R., Goldner G.M., Wadsak W., Pfaff S., Mitterhauser M., et al. PSMA Ligand PET/MRI for Primary Prostate Cancer: Staging Performance and Clinical Impact. Clin. Cancer Res. 2018;24:6300–6307. doi: 10.1158/1078-0432.CCR-18-0768. PubMed DOI

Liu D., Cheng G., Ma X., Wang S., Zhao X., Zhang W., Yang W., Wang J. PET/CT using (68) Ga-PSMA-617 versus (18) F-fluorodeoxyglucose to differentiate low- and high-grade gliomas. J. Neuroimaging. 2021;31:733–742. doi: 10.1111/jon.12856. PubMed DOI

Usmani S., Al-Turkait D., Al-Kandari F., Ahmed N. Thyroid Cancer Detected on 68Ga-PMSA PET/CT. J. Pak. Med. Assoc. 2021;71:1511–1512. PubMed

Gündoğan C., Ergül N., Çakır M.S., Kılıçkesmez Ö., Gürsu R.U., Aksoy T., Çermik T.F. (68)Ga-PSMA PET/CT Versus (18)F-FDG PET/CT for Imaging of Hepatocellular Carcinoma. Mol. Imaging Radionucl. Ther. 2021;30:79–85. doi: 10.4274/mirt.galenos.2021.92053. PubMed DOI PMC

Zhao Q., Yang B., Dong A., Zuo C. 68Ga-PSMA-11 PET/CT in Isolated Bilateral Adrenal Metastases From Prostate Adenocarcinoma. Clin. Nucl. Med. 2021 doi: 10.1097/RLU.0000000000003759. PubMed DOI

Holzgreve A., Biczok A., Ruf V.C., Liesche-Starnecker F., Steiger K., Kirchner M.A., Unterrainer M., Mittlmeier L., Herms J., Schlegel J., et al. PSMA Expression in Glioblastoma as a Basis for Theranostic Approaches: A Retrospective, Correlational Panel Study Including Immunohistochemistry, Clinical Parameters and PET Imaging. Front. Oncol. 2021;11:646387. doi: 10.3389/fonc.2021.646387. PubMed DOI PMC

Veerasuri S., Redman S., Graham R., Meehan C., Little D. Non-prostate uptake on (18)F-PSMA-1007 PET/CT: A case of myeloma. BJR Case Rep. 2021;7:20200102. PubMed PMC

Sakthivel P., Kumar A., Arunraj S.T., Singh C.A., Kumar R. 68Ga-PSMA PET/CT Scan on Postoperative Assessment of Sinonasal Glomangiopericytoma. Clin. Nucl. Med. 2021;46:e478–e479. PubMed

Li R., Li D., Li X., Zuo C., Cheng C. The Appearance of Sjögren Syndrome on 68Ga-PSMA-11 PET/CT. Clin. Nucl. Med. 2021;46:517–519. doi: 10.1097/RLU.0000000000003584. PubMed DOI

Tumedei M.M., Ravaioli S., Matteucci F., Celli M., de Giorgi U., Gunelli R., Puccetti M., Paganelli G., Bravaccini S. Spotlight on PSMA as a new theranostic biomarker for bladder cancer. Sci. Rep. 2021;11:9777. doi: 10.1038/s41598-021-89160-0. PubMed DOI PMC

Zitzmann S., Ehemann V., Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 2002;62:5139–5143. PubMed

Haubner R., Wester H.J., Reuning U., Senekowitsch-Schmidtke R., Diefenbach B., Kessler H., Stöcklin G., Schwaiger M. Radiolabeled alpha(v)beta3 integrin antagonists: A new class of tracers for tumor targeting. J. Nucl. Med. 1999;40:1061–1071. PubMed

Haubner R., Kuhnast B., Mang C., Weber W.A., Kessler H., Wester H.J., Schwaiger M. [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug. Chem. 2004;15:61–69. doi: 10.1021/bc034170n. PubMed DOI

Haubner R., Weber W.A., Beer A.J., Vabuliene E., Reim D., Sarbia M., Becker K.F., Goebel M., Hein R., Wester H.J., et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70. doi: 10.1371/journal.pmed.0020070. PubMed DOI PMC

Makowski M.R., Rischpler C., Ebersberger U., Keithahn A., Kasel M., Hoffmann E., Rassaf T., Kessler H., Wester H.J., Nekolla S.G., et al. Multiparametric PET and MRI of myocardial damage after myocardial infarction: Correlation of integrin αvβ3 expression and myocardial blood flow. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:1070–1080. doi: 10.1007/s00259-020-05034-z. PubMed DOI PMC

Bach-Gansmo T., Danielsson R., Saracco A., Wilczek B., Bogsrud T.V., Fangberget A., Tangerud A., Tobin D. Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692. J. Nucl. Med. 2006;47:1434–1439. PubMed

Mena E., Owenius R., Turkbey B., Sherry R., Bratslavsky G., Macholl S., Miller M.P., Somer E.J., Lindenberg L., Adler S., et al. [18F]fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ 3 and α vβ 5 integrins. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:1879–1888. doi: 10.1007/s00259-014-2791-x. PubMed DOI PMC

Chianelli M., Boerman O.C., Malviya G., Galli F., Oyen W.J., Signore A. Receptor binding ligands to image infection. Curr. Pharm. Des. 2008;14:3316–3325. doi: 10.2174/138161208786549416. PubMed DOI

Elvas F., Berghe T.V., Adriaenssens Y., Vandenabeele P., Augustyns K., Staelens S., Stroobants S., van der Veken P., Wyffels L. Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Org. Biomol. Chem. 2019;17:4801–4824. doi: 10.1039/C9OB00657E. PubMed DOI

Kraus S., Dierks A., Rasche L., Kertels O., Kircher M., Schirbel A., Zovko J., Steinbrunn T., Tibes R., Wester H.J., et al. (68)Ga-Pentixafor-PET/CT imaging represents a novel approach to detect chemokine receptor CXCR4 expression in myeloproliferative neoplasms. J. Nucl. Med. 2021;121:262206. PubMed PMC

Cojoc M., Peitzsch C., Trautmann F., Polishchuk L., Telegeev G.D., Dubrovska A. Emerging targets in cancer management: Role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6:1347–1361. PubMed PMC

Burger J.A., Peled A. CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23:43–52. doi: 10.1038/leu.2008.299. PubMed DOI

Zhang J., Niu G., Lang L., Li F., Fan X., Yan X., Yao S., Yan W., Huo L., Chen L., et al. Clinical Translation of a Dual Integrin αvβ3- and Gastrin-Releasing Peptide Receptor-Targeting PET Radiotracer, 68Ga-BBN-RGD. J. Nucl. Med. 2017;58:228–234. doi: 10.2967/jnumed.116.177048. PubMed DOI PMC

Gyuricza B., Szabó J.P., Arató V., Szücs D., Vágner A., Szikra D., Fekete A. Synthesis of Novel, Dual-Targeting (68)Ga-NODAGA-LacN-E[c(RGDfK)](2) Glycopeptide as a PET Imaging Agent for Cancer Diagnosis. Pharmaceutics. 2021;13:796. doi: 10.3390/pharmaceutics13060796. PubMed DOI PMC

Fields G.B. Introduction to peptide synthesis. Curr. Protoc. Protein Sci. 2002;69:18. doi: 10.1002/0471142735.im0901s47. PubMed DOI PMC

Mueller L.K., Baumruck A.C., Zhdanova H., Tietze A.A. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front. Bioeng. Biotechnol. 2020;8:162. doi: 10.3389/fbioe.2020.00162. PubMed DOI PMC

Kochendoerfer G.G., Kent S.B. Chemical protein synthesis. Curr. Opin. Chem. Biol. 1999;3:665–671. doi: 10.1016/S1367-5931(99)00024-1. PubMed DOI

Sakamoto S., Putalun W., Vimolmangkang S., Phoolcharoen W., Shoyama Y., Tanaka H., Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018;72:32–42. doi: 10.1007/s11418-017-1144-z. PubMed DOI PMC

European Medicines Agency, ICH Topic Q 2 (R1) [(accessed on 12 August 2021)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf.

Sun X., Li Y., Liu T., Li Z., Zhang X., Chen X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev. 2017;110–111:38–51. doi: 10.1016/j.addr.2016.06.007. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...