Future Perspective of Diabetic Animal Models
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
31241444
PubMed Central
PMC7360914
DOI
10.2174/1871530319666190626143832
PII: EMIDDT-EPUB-99232
Knihovny.cz E-zdroje
- Klíčová slova
- Animal model, diabetes mellitus, humanized animal model, immunotherapies, meta-analysis, pathogens.,
- MeSH
- diabetes mellitus 2. typu chemicky indukované farmakoterapie genetika MeSH
- druhová specificita MeSH
- experimentální diabetes mellitus chemicky indukované farmakoterapie MeSH
- hypoglykemika farmakologie MeSH
- lidé MeSH
- mutantní kmeny myší MeSH
- myši inbrední C57BL MeSH
- myši inbrední NOD MeSH
- potkani inbrední BB MeSH
- potkani inbrední LEW MeSH
- potkani Zucker MeSH
- předpověď MeSH
- preklinické hodnocení léčiv trendy MeSH
- streptozocin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hypoglykemika MeSH
- streptozocin MeSH
OBJECTIVE: The need of today's research is to develop successful and reliable diabetic animal models for understanding the disease susceptibility and pathogenesis. Enormous success of animal models had already been acclaimed for identifying key genetic and environmental factors like Idd loci and effects of microorganisms including the gut microbiota. Furthermore, animal models had also helped in identifying many therapeutic targets and strategies for immune-intervention. In spite of a quite success, we have acknowledged that many of the discovered immunotherapies are working on animals and did not have a significant impact on human. Number of animal models were developed in the past to accelerate drug discovery pipeline. However, due to poor initial screening and assessment on inequivalent animal models, the percentage of drug candidates who succeeded during clinical trials was very low. Therefore, it is essential to bridge this gap between pre-clinical research and clinical trial by validating the existing animal models for consistency. RESULTS AND CONCLUSION: In this review, we have discussed and evaluated the significance of animal models on behalf of published data on PUBMED. Amongst the most popular diabetic animal models, we have selected six animal models (e.g. BioBreeding rat, "LEW IDDM rat", "Nonobese Diabetic (NOD) mouse", "STZ RAT", "LEPR Mouse" and "Zucker Diabetic Fatty (ZDF) rat" and ranked them as per their published literature on PUBMED. Moreover, the vision and brief imagination for developing an advanced and robust diabetic model of 21st century was discussed with the theme of one miceone human concept including organs-on-chips.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Zobrazit více v PubMed
Ericsson A.C., Crim M.J., Franklin C.L. A brief history of animal modeling. Mo. Med. 2013;110(3):201–205. [PMID: 23829102]. PubMed PMC
Denayer T., Stöhr T., Van Roy M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med. 2014;2(1):5–11. [http://dx.doi.org/10.1016/j.nhtm.2014.08.001].
Balls M. The wisdom of Russell and Burch. 3. Fidelity and discrimination. Altern. Lab. Anim. 2013;41(1):12–14. [http://dx.doi.org/10.1177/026119291304100120]. [PMID: 23614551]. PubMed
Andes D., Craig W.A. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int. J. Antimicrob. Agents. 2002;19(4):261–268. [http://dx.doi.org/10.1016/S0924-8579(02)00022-5]. [PMID: 11978497]. PubMed
Zhao M., Lepak A.J., Andes D.R. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg. Med. Chem. 2016;24(24):6390–6400. [http://dx.doi.org/10.1016/j.bmc.2016.11.008]. [PMID: 27887963]. PubMed
McGonigle P., Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 2014;87(1):162–171. [http://dx.doi.org/10.1016/j.bcp.2013.08.006]. [PMID: 23954708]. PubMed
Vaddady P.K., Lee R.E., Meibohm B. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med. Chem. 2010;2(8):1355–1369. [http://dx.doi.org/10.4155/fmc.10.224]. [PMID: 21359155]. PubMed PMC
Brochot A., Zamacona M., Stockis A. Physiologically based pharmacokinetic/pharmacodynamic animal-to-man prediction of therapeutic dose in a model of epilepsy. Basic Clin. Pharmacol. Toxicol. 2010;106(3):256–262. [http://dx.doi.org/10.1111/j.1742-7843.2009.00536.x]. [PMID: 20102365]. PubMed
Lodise T.P., Drusano G.L. Use of pharmacokinetic/pharmacodynamic systems analyses to inform dose selection of tedizolid phosphate. Clin. Infect. Dis. 2014;58(Suppl. 1):S28–S34. [http://dx.doi.org/10.1093/cid/cit615]. [PMID: 24343829]. PubMed
Ogurtsova K., da Rocha Fernandes J.D., Huang Y., Linnenkamp U., Guariguata L., Cho N.H., Cavan D., Shaw J.E., Makaroff L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017;128:40–50. [http://dx.doi.org/10.1016/j.diabres.2017.03.024]. [PMID: 28437734]. PubMed
Rowley W.R., Bezold C., Arikan Y., Byrne E., Krohe S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017;20(1):6–12. [http://dx.doi.org/10.1089/pop.2015.0181]. [PMID: 27124621]. PubMed PMC
Roden M. Wien. Klin. Wochenschr. 2016;128(Suppl. 2):S37–S40. [Diabetes mellitus: definition, classification and diagnosis]. [Diabetes mellitus: definition, classification and diagnosis]. [http://dx.doi.org/10.1007/s00508-015-0931-3]. [PMID: 27052219]. PubMed
Atkinson M.A., Eisenbarth G.S. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358(9277):221–229. [http://dx.doi.org/10.1016/S0140-6736(01)05415-0]. [PMID: 11476858]. PubMed
Nyaga D.M., Vickers M.H., Jefferies C., Perry J.K., O’Sullivan J.M. The genetic architecture of type 1 diabetes mellitus. Mol. Cell. Endocrinol. 2018;477:70–80. [http://dx.doi.org/10.1016/j.mce.2018.06.002]. [PMID: 29913182]. PubMed
Redondo M.J., Fain P.R., Eisenbarth G.S. Genetics of type 1A diabetes. Recent Prog. Horm. Res. 2001;56:69–89. [http://dx.doi.org/10.1210/rp.56.1.69]. [PMID: 11237226]. PubMed
Kelly M.A., Mijovic C.H., Barnett A.H. Genetics of type 1 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 2001;15(3):279–291. [http://dx.doi.org/10.1053/beem.2001.0146]. [PMID: 11554771]. PubMed
Slavikova J., Mistrova E., Dvorakova M.C. Pathophysiology of diabetic cardiomyopathy. Diabetologie Metabolismus Endokrinologie Vyziva. 2018;21(1):21–29.
DeFronzo R.A., Ferrannini E., Groop L., Henry R.R., Herman W.H., Holst J.J., Hu F.B., Kahn C.R., Raz I., Shulman G.I., Simonson D.C., Testa M.A., Weiss R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers. 2015;1:15019. [http://dx.doi.org/10.1038/nrdp.2015.19]. [PMID: 27189025]. PubMed
Murai Y., Ohta T., Tadaki H., Miyajima K., Shinohara M., Fatchiyah F., Yamada T. Assessment of Pharmacological Responses to an Anti-diabetic Drug in a New Obese Type 2 Diabetic Rat Model. Med. Arh. 2017;71(6):380–384. [http://dx.doi.org/10.5455/medarh.2017.71.380-384]. [PMID: 29416195]. PubMed PMC
Al-Awar A., Kupai K., Veszelka M., Szűcs G., Attieh Z., Murlasits Z., Török S., Pósa A., Varga C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016;•••:20169051426. [http://dx.doi.org/10.1155/2016/9051426]. [PMID: 27595114]. PubMed PMC
Srinivasan K., Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J. Med. Res. 2007;125(3):451–472. [PMID: 17496368]. PubMed
King A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012;166(3):877–894. [http://dx.doi.org/10.1111/j.1476-5381.2012.01911.x]. [PMID: 22352879]. PubMed PMC
Sasase T., Pezzolesi M.G., Yokoi N., Yamada T., Matsumoto K. Animal models of diabetes and metabolic disease. J. Diabetes Res. 2013;•••:2013281928. [http://dx.doi.org/10.1155/2013/281928]. [PMID: 23878821]. PubMed PMC
Mordes J.P., Bortell R., Blankenhorn E.P., Rossini A.A., Greiner D.L. Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J. 2004;45(3):278–291. [http://dx.doi.org/10.1093/ilar.45.3.278]. [PMID: 15229375]. PubMed
Rees D.A., Alcolado J.C. Animal models of diabetes mellitus. Diabet. Med. 2005;22(4):359–370. [http://dx.doi.org/10.1111/j.1464-5491.2005.01499.x]. [PMID: 15787657]. PubMed
Wallis R.H., Wang K., Marandi L., Hsieh E., Ning T., Chao G.Y., Sarmiento J., Paterson A.D., Poussier P. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes. 2009;58(4):1007–1017. [http://dx.doi.org/10.2337/db08-1215]. [PMID: 19168599]. PubMed PMC
Holmberg R., Refai E., Höög A., Crooke R.M., Graham M., Olivecrona G., Berggren P.O., Juntti-Berggren L. Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc. Natl. Acad. Sci. USA. 2011;108(26):10685–10689. [http://dx.doi.org/10.1073/pnas.1019553108]. [PMID: 21670290]. PubMed PMC
Hartoft-Nielsen M.L., Rasmussen A.K., Bock T., Feldt-Rasmussen U., Kaas A., Buschard K. Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats. Autoimmunity. 2009;42(2):131–138. [http://dx.doi.org/10.1080/08916930802438774]. [PMID: 19021014]. PubMed
Zhang W., Kamiya H., Ekberg K., Wahren J., Sima A.A. C-peptide improves neuropathy in type 1 diabetic BB/Wor-rats. Diabetes Metab. Res. Rev. 2007;23(1):63–70. [http://dx.doi.org/10.1002/dmrr.672]. [PMID: 16845685]. PubMed
Jörns A., Günther A., Hedrich H.J., Wedekind D., Tiedge M., Lenzen S. Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes. 2005;54(7):2041–2052. [http://dx.doi.org/10.2337/diabetes.54.7.2041]. [PMID: 15983205]. PubMed
Lenzen S., Tiedge M., Elsner M., Lortz S., Weiss H., Jörns A., Klöppel G., Wedekind D., Prokop C.M., Hedrich H.J. The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia. 2001;44(9):1189–1196. [http://dx.doi.org/10.1007/s001250100625]. [PMID: 11596676]. PubMed
Mathews C.E. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatr. Diabetes. 2005;6(3):165–177. [http://dx.doi.org/10.1111/j.1399-543X.2005.00123.x]. [PMID: 16109074]. PubMed
Jörns A., Rath K.J., Terbish T., Arndt T., Meyer Zu Vilsendorf A., Wedekind D., Hedrich H.J., Lenzen S. Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation. Endocrinology. 2010;151(8):3555–3565. [http://dx.doi.org/10.1210/en.2010-0202]. [PMID: 20501676]. PubMed
Arndt T., Wedekind D., Weiss H., Tiedge M., Lenzen S., Hedrich H.J., Jörns A. Prevention of spontaneous immune-mediated diabetes development in the LEW.1AR1-iddm rat by selective CD8+ T cell transfer is associated with a cytokine shift in the pancreas-draining lymph nodes. Diabetologia. 2009;52(7):1381–1390. [http://dx.doi.org/10.1007/s00125-009-1348-1]. [PMID: 19367386]. PubMed
Jörns A., Kubat B., Tiedge M., Wedekind D., Hedrich H.J., Klöppel G., Lenzen S. Pathology of the pancreas and other organs in the diabetic LEW.1AR1/Ztm- iddm rat, a new model of spontaneous insulin-dependent diabetes mellitus. Virchows Arch. 2004;444(2):183–189. [http://dx.doi.org/10.1007/s00428-003-0956-2]. [PMID: 14735361]. PubMed
Peschke E., Hofmann K., Bähr I., Streck S., Albrecht E., Wedekind D., Mühlbauer E. The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia. 2011;54(7):1831–1840. [http://dx.doi.org/10.1007/s00125-011-2138-0]. [PMID: 21491159]. PubMed
Yang Z., Chen M., Fialkow L.B., Ellett J.D., Wu R., Brinkmann V., Nadler J.L., Lynch K.R. The immune modulator FYT720 prevents autoimmune diabetes in nonobese diabetic mice. Clin. Immunol. 2003;107(1):30–35. [http://dx.doi.org/10.1016/S1521-6616(02)00054-2]. [PMID: 12738247]. PubMed
Maki T., Gottschalk R., Ogawa N., Monaco A.P. Prevention and cure of autoimmune diabetes in nonobese diabetic mice by continuous administration of FTY720. Transplantation. 2005;79(9):1051–1055. [http://dx.doi.org/10.1097/01.TP.0000161220.87548.EE]. [PMID: 15880042]. PubMed
Hanafusa T., Miyagawa J., Nakajima H., Tomita K., Kuwajima M., Matsuzawa Y., Tarui S. The NOD mouse. Diabetes Res. Clin. Pract. 1994;(24):S307–S311. [http://dx.doi.org/10.1016/0168-8227(94)90267-4]. PubMed
Yoon J.W., Jun H.S. Viruses in type 1 diabetes: brief review. ILAR J. 2004;45(3):343–348. [http://dx.doi.org/10.1093/ilar.45.3.343]. [PMID: 15229381]. PubMed
Jansen A., Homo-Delarche F., Hooijkaas H., Leenen P.J., Dardenne M., Drexhage H.A. Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes. 1994;43(5):667–675. [http://dx.doi.org/10.2337/diab.43.5.667]. [PMID: 8168644]. PubMed
Bouma G., Coppens J.M., Mourits S., Nikolic T., Sozzani S., Drexhage H.A., Versnel M.A. Evidence for an enhanced adhesion of DC to fibronectin and a role of CCL19 and CCL21 in the accumulation of DC around the pre-diabetic islets in NOD mice. Eur. J. Immunol. 2005;35(8):2386–2396. [http://dx.doi.org/10.1002/eji.200526251]. [PMID: 16047341]. PubMed
Diana J., Simoni Y., Furio L., Beaudoin L., Agerberth B., Barrat F., Lehuen A. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 2013;19(1):65–73. [http://dx.doi.org/10.1038/nm.3042]. [PMID: 23242473]. PubMed
Willcox A., Richardson S.J., Bone A.J., Foulis A.K., Morgan N.G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 2009;155(2):173–181. [http://dx.doi.org/10.1111/j.1365-2249.2008.03860.x]. [PMID: 19128359]. PubMed PMC
Miyazaki A., Hanafusa T., Yamada K., Miyagawa J., Fujino-Kurihara H., Nakajima H., Nonaka K., Tarui S. Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 1985;60(3):622–630. [PMID: 3160515]. PubMed PMC
Pearson J.A., Wong F.S., Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J. Autoimmun. 2016;66:76–88. [http://dx.doi.org/10.1016/j.jaut.2015.08.019]. [PMID: 26403950]. PubMed PMC
Noble J.A., Erlich H.A. Genetics of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2012;2(1):a007732. [http://dx.doi.org/10.1101/cshperspect.a007732]. [PMID: 22315720]. PubMed PMC
Chen Y.G., Mathews C.E., Driver J.P. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front. Endocrinol. (Lausanne) 2018;9:51. [http://dx.doi.org/10.3389/fendo.2018.00051]. [PMID: 29527189]. PubMed PMC
Todd J.A., Wicker L.S. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity. 2001;15(3):387–395. [http://dx.doi.org/10.1016/S1074-7613(01)00202-3]. [PMID: 11567629]. PubMed
von Herrath M., Filippi C., Coppieters K. How viral infections enhance or prevent type 1 diabetes-from mouse to man. J. Med. Virol. 2011;83(9):1672. [http://dx.doi.org/10.1002/jmv.22063]. [PMID: 21739461]. PubMed
Yang Y., Santamaria P. Lessons on autoimmune diabetes from animal models. Clin. Sci. (Lond.) 2006;110(6):627–639. [http://dx.doi.org/10.1042/CS20050330]. [PMID: 16689681]. PubMed
Mathews C.E., Langley S.H., Leiter E.H. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation. 2002;73(8):1333–1336. [http://dx.doi.org/10.1097/00007890-200204270-00024]. [PMID: 11981430]. PubMed
Drel V.R., Pacher P., Stavniichuk R., Xu W., Zhang J., Kuchmerovska T.M., Slusher B., Obrosova I.G. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int. J. Mol. Med. 2011;28(4):629–635. [PMID: 21617845]. PubMed PMC
Zhou C., Pridgen B., King N., Xu J., Breslow J.L. Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. J. Lipid Res. 2011;52(8):1483–1493. [http://dx.doi.org/10.1194/jlr.M014092]. [PMID: 21606463]. PubMed PMC
Gurley S.B., Clare S.E., Snow K.P., Hu A., Meyer T.W., Coffman T.M. Impact of genetic background on nephropathy in diabetic mice. Am. J. Physiol. Renal Physiol. 2006;290(1):F214–F222. [http://dx.doi.org/10.1152/ajprenal.00204.2005]. [PMID: 16118394]. PubMed
Tyrberg B., Andersson A., Borg L.A. Species differences in susceptibility of transplanted and cultured pancreatic islets to the beta-cell toxin alloxan. Gen. Comp. Endocrinol. 2001;122(3):238–251. [http://dx.doi.org/10.1006/gcen.2001.7638]. [PMID: 11356036]. PubMed
Dufrane D., van Steenberghe M., Guiot Y., Goebbels R.M., Saliez A., Gianello P. Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation. 2006;81(1):36–45. [http://dx.doi.org/10.1097/01.tp.0000189712.74495.82]. [PMID: 16421474]. PubMed
Eizirik D.L., Pipeleers D.G., Ling Z., Welsh N., Hellerström C., Andersson A. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc. Natl. Acad. Sci. USA. 1994;91(20):9253–9256. [http://dx.doi.org/10.1073/pnas.91.20.9253]. [PMID: 7937750]. PubMed PMC
Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–226. [http://dx.doi.org/10.1007/s00125-007-0886-7]. [PMID: 18087688]. PubMed
Wise M.H., Gordon C., Johnson R.W. Intraportal autotransplantation of cryopreserved porcine islets of Langerhans. Cryobiology. 1985;22(4):359–366. [http://dx.doi.org/10.1016/0011-2240(85)90183-X]. [PMID: 3161702]. PubMed
He S., Chen Y., Wei L., Jin X., Zeng L., Ren Y., Zhang J., Wang L., Li H., Lu Y., Cheng J. Treatment and risk factor analysis of hypoglycemia in diabetic rhesus monkeys. Exp. Biol. Med. (Maywood) 2011;236(2):212–218. [http://dx.doi.org/10.1258/ebm.2010.010208]. [PMID: 21321318]. PubMed
Wei L., Lu Y., He S., Jin X., Zeng L., Zhang S., Chen Y., Tian B., Mai G., Yang G., Zhang J., Wang L., Li H., Markmann J.F., Cheng J., Deng S. Induction of diabetes with signs of autoimmunity in primates by the injection of multiple-low-dose streptozotocin. Biochem. Biophys. Res. Commun. 2011;412(2):373–378. [http://dx.doi.org/10.1016/j.bbrc.2011.07.105]. [PMID: 21821007]. PubMed
Moon C.H., Jung Y.S., Lee S.H., Baik E.J. Protein kinase C inhibitors abolish the increased resistance of diabetic rat heart to ischemia-reperfusion injury. Jpn. J. Physiol. 1999;49(5):409–415. [http://dx.doi.org/10.2170/jjphysiol.49.409]. [PMID: 10603424]. PubMed
Chen H., Shen W.L., Wang X.H., Chen H.Z., Gu J.Z., Fu J., Ni Y.F., Gao P.J., Zhu D.L., Higashino H. Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity. Clin. Exp. Pharmacol. Physiol. 2006;33(10):910–916. [http://dx.doi.org/10.1111/j.1440-1681.2006.04463.x]. [PMID: 17002667]. PubMed
Ravingerova T., Matejikova J., Pancza D., Kolar F. Reduced susceptibility to ischemia-induced arrhythmias in the preconditioned rat heart is independent of PI3-kinase/Akt. Physiol. Res. 2009;58(3):443–447. [PMID: 19627174]. PubMed
Chen H., Charlat O., Tartaglia L.A., Woolf E.A., Weng X., Ellis S.J., Lakey N.D., Culpepper J., Moore K.J., Breitbart R.E., Duyk G.M., Tepper R.I., Morgenstern J.P. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–495. [http://dx.doi.org/10.1016/S0092-8674(00)81294-5]. [PMID: 8608603]. PubMed
Gault V.A., Kerr B.D., Harriott P., Flatt P.R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. (Lond.) 2011;121(3):107–117. [http://dx.doi.org/10.1042/CS20110006]. [PMID: 21332446]. PubMed
Yoshida S., Tanaka H., Oshima H., Yamazaki T., Yonetoku Y., Ohishi T., Matsui T., Shibasaki M. AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochem. Biophys. Res. Commun. 2010;400(4):745–751. [http://dx.doi.org/10.1016/j.bbrc.2010.08.141]. [PMID: 20816753]. PubMed
Park J.S., Rhee S.D., Kang N.S., Jung W.H., Kim H.Y., Kim J.H., Kang S.K., Cheon H.G., Ahn J.H., Kim K.Y. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344). Biochem. Pharmacol. 2011;81(8):1028–1035. [http://dx.doi.org/10.1016/j.bcp.2011.01.020]. [PMID: 21315688]. PubMed
Lindström P. The physiology of obese-hyperglycemic mice. ScientificWorldJournal. 2007;7:666–685. [ob/ob mice]. [ob/ob mice]. [http://dx.doi.org/10.1100/tsw.2007.117]. [PMID: 17619751]. PubMed PMC
Chehab F.F., Lim M.E., Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 1996;12(3):318–320. [http://dx.doi.org/10.1038/ng0396-318]. [PMID: 8589726]. PubMed
Bock T., Pakkenberg B., Buschard K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes. 2003;52(7):1716–1722. [http://dx.doi.org/10.2337/diabetes.52.7.1716]. [PMID: 12829638]. PubMed
Lavine R.L., Voyles N., Perrino P.V., Recant L. Functional abnormalities of islets of Langerhans of obese hyperglycemic mouse. Am. J. Physiol. 1977;233(2):E86–E90. [PMID: 329686]. PubMed
Coleman D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141–148. [http://dx.doi.org/10.1007/BF00429772]. [PMID: 350680]. PubMed
Asensio C., Cettour-Rose P., Theander-Carrillo C., Rohner-Jeanrenaud F., Muzzin P. Changes in glycemia by leptin administration or high- fat feeding in rodent models of obesity/type 2 diabetes suggest a link between resistin expression and control of glucose homeostasis. Endocrinology. 2004;145(5):2206–2213. [http://dx.doi.org/10.1210/en.2003-1679]. [PMID: 14962997]. PubMed
Zhang B., Salituro G., Szalkowski D., Li Z., Zhang Y., Royo I., Vilella D., Díez M.T., Pelaez F., Ruby C., Kendall R.L., Mao X., Griffin P., Calaycay J., Zierath J.R., Heck J.V., Smith R.G., Moller D.E. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 1999;284(5416):974–977. [http://dx.doi.org/10.1126/science.284.5416.974]. [PMID: 10320380]. PubMed
Chakrabarti R., Vikramadithyan R.K., Misra P., Hiriyan J., Raichur S., Damarla R.K., Gershome C., Suresh J., Rajagopalan R. Ragaglitazar: a novel PPAR alpha PPAR gamma agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br. J. Pharmacol. 2003;140(3):527–537. [http://dx.doi.org/10.1038/sj.bjp.0705463]. [PMID: 12970088]. PubMed PMC
Hummel K.P., Dickie M.M., Coleman D.L. Diabetes, a new mutation in the mouse. Science. 1966;153(3740):1127–1128. [http://dx.doi.org/10.1126/science.153.3740.1127]. [PMID: 5918576]. PubMed
Phillips M.S., Liu Q., Hammond H.A., Dugan V., Hey P.J., Caskey C.J., Hess J.F. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 1996;13(1):18–19. [http://dx.doi.org/10.1038/ng0596-18]. [PMID: 8673096]. PubMed
Tokuyama Y., Sturis J., DePaoli A.M., Takeda J., Stoffel M., Tang J., Sun X., Polonsky K.S., Bell G.I. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995;44(12):1447–1457. [http://dx.doi.org/10.2337/diab.44.12.1447]. [PMID: 7589853]. PubMed
Lee Y., Hirose H., Zhou Y.T., Esser V., McGarry J.D., Unger R.H. Increased lipogenic capacity of the islets of obese rats: a role in the pathogenesis of NIDDM. Diabetes. 1997;46(3):408–413. [http://dx.doi.org/10.2337/diab.46.3.408]. [PMID: 9032096]. PubMed
Shimabukuro M., Zhou Y.T., Levi M., Unger R.H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA. 1998;95(5):2498–2502. [http://dx.doi.org/10.1073/pnas.95.5.2498]. [PMID: 9482914]. PubMed PMC
Shimabukuro M., Higa M., Zhou Y.T., Wang M.Y., Newgard C.B., Unger R.H. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 1998;273(49):32487–32490. [http://dx.doi.org/10.1074/jbc.273.49.32487]. [PMID: 9829981]. PubMed
Hemmes R.B., Schoch R. High dosage testosterone propionate induces copulatory behavior in the obese male Zucker rat. Physiol. Behav. 1988;43(3):321–324. [http://dx.doi.org/10.1016/0031-9384(88)90195-3]. [PMID: 3174844]. PubMed
Shibata T., Takeuchi S., Yokota S., Kakimoto K., Yonemori F., Wakitani K. Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br. J. Pharmacol. 2000;130(3):495–504. [http://dx.doi.org/10.1038/sj.bjp.0703328]. [PMID: 10821776]. PubMed PMC
Clohessy J.G., Pandolfi P.P. Mouse hospital and co-clinical trial project--from bench to bedside. Nat. Rev. Clin. Oncol. 2015;12(8):491–498. [http://dx.doi.org/10.1038/nrclinonc.2015.62]. [PMID: 25895610]. PubMed
Clohessy J.G., Pandolfi P.P. The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care. Front. Oncol. 2018;8:340. [http://dx.doi.org/10.3389/fonc.2018.00340]. [PMID: 30211119]. PubMed PMC
Yang F., Stewart M., Ye J., DeMets D. Type 2 diabetes mellitus development programs in the new regulatory environment with cardiovascular safety requirements. Diabetes Metab. Syndr. Obes. 2015;8:315–325. [http://dx.doi.org/10.2147/DMSO.S84005]. [PMID: 26229496]. PubMed PMC
Brass E.P. The Food and Drug Administration and the Future of Drug Development for the Treatment of Diabetes. Diabetes Spectr. 2014;27(2):75–77. [http://dx.doi.org/10.2337/diaspect.27.2.75]. [PMID: 26246760]. PubMed PMC
Smith R.J., Goldfine A.B., Hiatt W.R. Evaluating the Cardiovascular Safety of New Medications for Type 2 Diabetes: Time to Reassess? Diabetes Care. 2016;39(5):738–742. [http://dx.doi.org/10.2337/dc15-2237]. [PMID: 27208377]. PubMed
Garcia-Verdugo R., Erbach M., Schnell O. Need for Outcome Scenario Analysis of Clinical Trials in Diabetes. J. Diabetes Sci. Technol. 2017;11(2):327–334. [http://dx.doi.org/10.1177/1932296816670925]. [PMID: 27707913]. PubMed PMC
Derscheid R.J., Ackermann M.R. Perinatal lamb model of respiratory syncytial virus (RSV) infection. Viruses. 2012;4(10):2359–2378. [http://dx.doi.org/10.3390/v4102359]. [PMID: 23202468]. PubMed PMC
Sams-Dodd F. Strategies to optimize the validity of disease models in the drug discovery process. Drug Discov. Today. 2006;11(7-8):355–363. [http://dx.doi.org/10.1016/j.drudis.2006.02.005]. [PMID: 16580978]. PubMed
Cavagnaro J., Silva Lima B. Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products. Eur. J. Pharmacol. 2015;759:51–62. [http://dx.doi.org/10.1016/j.ejphar.2015.03.048]. [PMID: 25814257]. PubMed
Pinger C.W., Entwistle K.E., Bell T.M., Liu Y., Spence D.M. C-Peptide replacement therapy in type 1 diabetes: are we in the trough of disillusionment? Mol. Biosyst. 2017;13(8):1432–1437. [http://dx.doi.org/10.1039/C7MB00199A]. [PMID: 28685788]. PubMed PMC
Nissen S.E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007;356(24):2457–2471. [http://dx.doi.org/10.1056/NEJMoa072761]. [PMID: 17517853]. PubMed
Cheng D., Gao H., Li W. Long-term risk of rosiglitazone on cardiovascular events - a systematic review and meta-analysis. Endokrynol. Pol. 2018;69(4):381–394. [PMID: 29952413]. PubMed
Singh S., Loke Y.K., Furberg C.D. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–1195. [http://dx.doi.org/10.1001/jama.298.10.1189]. [PMID: 17848653]. PubMed
Blind E., Dunder K., de Graeff P.A., Abadie E. Rosiglitazone: a European regulatory perspective. Diabetologia. 2011;54(2):213–218. [http://dx.doi.org/10.1007/s00125-010-1992-5]. [PMID: 21153629]. PubMed
Cummings J.L., Morstorf T., Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 2014;6(4):37. [http://dx.doi.org/10.1186/alzrt269]. [PMID: 25024750]. PubMed PMC
van der Worp H.B., Howells D.W., Sena E.S., Porritt M.J., Rewell S., O’Collins V., Macleod M.R. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. [http://dx.doi.org/10.1371/journal.pmed.1000245]. [PMID: 20361020]. PubMed PMC
Tyagi P., Pechenov S., Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J. Control. Release. 2018;287:167–176. [http://dx.doi.org/10.1016/j.jconrel.2018.08.032]. [PMID: 30145135]. PubMed
Hooper S.B., Te Pas A.B., Polglase G.R., Wyckoff M. Animal models in neonatal resuscitation research: What can they teach us? Semin. Fetal Neonatal Med. 2018;23(5):300–305. [http://dx.doi.org/10.1016/j.siny.2018.07.002]. [PMID: 30001819]. PubMed
Koch J.C., Tatenhorst L., Roser A.E., Saal K.A., Tönges L., Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol. Ther. 2018;189:1–21. [http://dx.doi.org/10.1016/j.pharmthera.2018.03.008]. [PMID: 29621594]. PubMed
Eicher A.K., Berns H.M., Wells J.M. Translating Developmental Principles to Generate Human Gastric Organoids. Cell. Mol. Gastroenterol. Hepatol. 2018;5(3):353–363. [http://dx.doi.org/10.1016/j.jcmgh.2017.12.014]. [PMID: 29552623]. PubMed PMC
Kenney L.L., Shultz L.D., Greiner D.L., Brehm M.A. Humanized Mouse Models for Transplant Immunology. Am. J. Transplant. 2016;16(2):389–397. [http://dx.doi.org/10.1111/ajt.13520]. [PMID: 26588186]. PubMed PMC
Wege A.K. Humanized Mouse Models for the Preclinical Assessment of Cancer Immunotherapy. BioDrugs. 2018;32(3):245–266. [http://dx.doi.org/10.1007/s40259-018-0275-4]. [PMID: 29589229]. PubMed
Ito R., Takahashi T., Katano I., Ito M. Current advances in humanized mouse models. Cell. Mol. Immunol. 2012;9(3):208–214. [http://dx.doi.org/10.1038/cmi.2012.2]. [PMID: 22327211]. PubMed PMC
Abaci H.E., Shuler M.L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 2015;7(4):383–391. [http://dx.doi.org/10.1039/C4IB00292J]. [PMID: 25739725]. PubMed PMC
Brown J.A., Codreanu S.G., Shi M., Sherrod S.D., Markov D.A., Neely M.D., Britt C.M., Hoilett O.S., Reiserer R.S., Samson P.C., McCawley L.J., Webb D.J., Bowman A.B., McLean J.A., Wikswo J.P. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation. 2016;13(1):306. [http://dx.doi.org/10.1186/s12974-016-0760-y]. [PMID: 27955696]. PubMed PMC
Dodson K.H., Echevarria F.D., Li D., Sappington R.M., Edd J.F. Retina-on-a-chip: a microfluidic platform for point access signaling studies. Biomed. Microdevices. 2015;17(6):114. [http://dx.doi.org/10.1007/s10544-015-0019-x]. [PMID: 26559199]. PubMed PMC
Dorval T., Chanrion B., Cattin M.E., Stephan J.P. Filling the drug discovery gap: is high-content screening the missing link? Curr. Opin. Pharmacol. 2018;42:40–45. [http://dx.doi.org/10.1016/j.coph.2018.07.002]. [PMID: 30032033]. PubMed
Hachey S.J., Hughes C.C.W. Applications of tumor chip technology. Lab Chip. 2018;18(19):2893–2912. [http://dx.doi.org/10.1039/C8LC00330K]. [PMID: 30156248]. PubMed PMC
Irimia D., Wang X. Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends Biotechnol. 2018;36(9):923–937. [http://dx.doi.org/10.1016/j.tibtech.2018.03.011]. [PMID: 29728272]. PubMed PMC
Kodzius R., Schulze F., Gao X., Schneider M.R. Organ-on-Chip Technology: Current State and Future Developments. Genes (Basel) 2017;8(10):E266. [http://dx.doi.org/10.3390/genes8100266]. [PMID: 29019963]. PubMed PMC
Mandenius C.F. Conceptual Design of Micro-Bioreactors and Organ-on-Chips for Studies of Cell Cultures. Bioengineering (Basel) 2018;5(3):E56. [http://dx.doi.org/10.3390/bioengineering5030056]. [PMID: 30029542]. PubMed PMC
Miranda C.C., Fernandes T.G., Diogo M.M., Cabral J.M.S. Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018;5(3):E49. [http://dx.doi.org/10.3390/bioengineering5030049]. [PMID: 29933623]. PubMed PMC
Nikolic M., Sustersic T., Filipovic N. In vitro Models and On-Chip Systems: Biomaterial Interaction Studies With Tissues Generated Using Lung Epithelial and Liver Metabolic Cell Lines. Front. Bioeng. Biotechnol. 2018;6:120. [http://dx.doi.org/10.3389/fbioe.2018.00120]. [PMID: 30234106]. PubMed PMC
Rothbauer M., Rosser J.M., Zirath H., Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr. Opin. Biotechnol. 2019;55:81–86. [http://dx.doi.org/10.1016/j.copbio.2018.08.009]. [PMID: 30189349]. PubMed
Wikswo J.P., Block F.E., III, Cliffel D.E., Goodwin C.R., Marasco C.C., Markov D.A., McLean D.L., McLean J.A., McKenzie J.R., Reiserer R.S., Samson P.C., Schaffer D.K., Seale K.T., Sherrod S.D. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 2013;60(3):682–690. [http://dx.doi.org/10.1109/TBME.2013.2244891]. [PMID: 23380852]. PubMed PMC
Wikswo J.P., Curtis E.L., Eagleton Z.E., Evans B.C., Kole A., Hofmeister L.H., Matloff W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 2013;13(18):3496–3511. [http://dx.doi.org/10.1039/c3lc50243k]. [PMID: 23828456]. PubMed PMC
Wikswo J.P. Looking to the future of organs-on-chips: interview with Professor John Wikswo. Future Sci. OA. 2017;3(2):FSO163. [http://dx.doi.org/10.4155/fsoa-2016-0085]. [PMID: 28670462]. PubMed PMC
Wnorowski A., Yang H., Wu J.C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. 2018. PubMed PMC
Kersten K., de Visser K.E., van Miltenburg M.H., Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 2017;9(2):137–153. [http://dx.doi.org/10.15252/emmm.201606857]. [PMID: 28028012]. PubMed PMC
Uhl E.W., Warner N.J. Mouse Models as Predictors of Human Responses: Evolutionary Medicine. Curr. Pathobiol. Rep. 2015;3(3):219–223. [http://dx.doi.org/10.1007/s40139-015-0086-y]. [PMID: 26246962]. PubMed PMC
Luce S., Guinoiseau S., Gadault A., Letourneur F., Blondeau B., Nitschke P., Pasmant E., Vidaud M., Lemonnier F., Boitard C. Humanized Mouse Model to Study Type 1 Diabetes. Diabetes. 2018;67(9):1816–1829. [http://dx.doi.org/10.2337/db18-0202]. [PMID: 29967002]. PubMed
Walsh N.C., Kenney L.L., Jangalwe S., Aryee K.E., Greiner D.L., Brehm M.A., Shultz L.D. Humanized Mouse Models of Clinical Disease. Annu. Rev. Pathol. 2017;12:187–215. [http://dx.doi.org/10.1146/annurev-pathol-052016-100332]. [PMID: 27959627]. PubMed PMC
Puca L., Bareja R., Prandi D., Shaw R., Benelli M., Karthaus W.R., Hess J., Sigouros M., Donoghue A., Kossai M., Gao D., Cyrta J., Sailer V., Vosoughi A., Pauli C., Churakova Y., Cheung C., Deonarine L.D., McNary T.J., Rosati R., Tagawa S.T., Nanus D.M., Mosquera J.M., Sawyers C.L., Chen Y., Inghirami G., Rao R.A., Grandori C., Elemento O., Sboner A., Demichelis F., Rubin M.A., Beltran H. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun. 2018;9(1):2404. [http://dx.doi.org/10.1038/s41467-018-04495-z]. [PMID: 29921838]. PubMed PMC
Ibarrola-Villava M., Cervantes A., Bardelli A. Preclinical models for precision oncology. Biochim. Biophys. Acta Rev. Cancer. 2018;1870(2):239–246. [http://dx.doi.org/10.1016/j.bbcan.2018.06.004]. [PMID: 29959990]. PubMed
Garralda E., Paz K., López-Casas P.P., Jones S., Katz A., Kann L.M., López-Rios F., Sarno F., Al-Shahrour F., Vasquez D., Bruckheimer E., Angiuoli S.V., Calles A., Diaz L.A., Velculescu V.E., Valencia A., Sidransky D., Hidalgo M. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin. Cancer Res. 2014;20(9):2476–2484. [http://dx.doi.org/10.1158/1078-0432.CCR-13-3047]. [PMID: 24634382]. PubMed PMC
Malaney P., Nicosia S.V., Davé V. One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett. 2014;344(1):1–12. [http://dx.doi.org/10.1016/j.canlet.2013.10.010]. [PMID: 24157811]. PubMed PMC
Zayed A.A., Mandrekar S.J., Haluska P. Molecular and clinical implementations of ovarian cancer mouse avatar models. Linchuang Zhongliuxue Zazhi. 2015;4(3):30. [PMID: 26408297]. PubMed PMC
Saadat V., Tsugita R. 2005.
Wikswo J.P., Samson P.C., Emmanuel F., Reiserer R.S., Parker K.K., McLean J.A., McCawley L.J., Markov D., Levner D., Ingber D.E., Hamilton G.A., Goss J.A., Cunningham R., Cliffel D.E., McKenzie R.J., Bahinski A., Hinojosa C.D. 2017.
Gonda S.R., Chang R.C., Starly B., Culbertson C., Holtorf H.L., Sun W., Leslie J. 2013.
Gatenholm P. 2014.
Ingber D.E., Parker K.K., Hamilton G.A., Bahinski A. 2018.
Andreassen S., Falck B., Olesen K.G. Diagnostic function of the microhuman prototype of the expert system--MUNIN. Electroencephalogr. Clin. Neurophysiol. 1992;85(2):143–157. [http://dx.doi.org/10.1016/0168-5597(92)90080-U]. [PMID: 1373367]. PubMed
Animal Models in Diabetic Research-History, Presence, and Future Perspectives
Role of Peptides in Diagnostics