Animal Models in Diabetic Research-History, Presence, and Future Perspectives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Cooperatio
Charles University
PubMed
37893225
PubMed Central
PMC10603837
DOI
10.3390/biomedicines11102852
PII: biomedicines11102852
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, diabetes mellitus, history, organ-on-chip,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Zobrazit více v PubMed
Pandey S., Dvorakova M.C. Significance of animal models in the research of diabetes. Diabetol. Metab. Endokrinol. Vyz. 2019;22:65–71.
Pandey S., Jirásko M., Lochman J., Chvátal A., Chottova Dvorakova M., Kučera R. iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine. J. Pers. Med. 2022;12:1485. doi: 10.3390/jpm12091485. PubMed DOI PMC
ElSayed N.A., Aleppo G., Aroda V.R., Bannuru R.R., Brown F.M., Bruemmer D., Collins B.S., Hilliard M.E., Isaacs D., Johnson E.L., et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46((Suppl. 1)):S19–S40. doi: 10.2337/dc23-S002. PubMed DOI PMC
Sun H., Saeedi P., Karuranga S., Pinkepank M., Ogurtsova K., Duncan B.B., Stein C., Basit A., Chan J.C.N., Mbanya J.C., et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC
Rashmi P., Urmila A., Likhit A., Subhash B., Shailendra G. Rodent models for diabetes. 3 Biotech. 2023;13:80. doi: 10.1007/s13205-023-03488-0. PubMed DOI PMC
de Leiva-Hidalgo A., de Leiva-Pérez A., Bruguès-Bruguès E. From pancreatic extracts to artificial pancreas: History, science and controversies about the discovery of the pancreatic antidiabetic hormone. Av. Diabetol. 2011;27:15–26. doi: 10.1016/S1134-3230(11)70004-7. DOI
Luft R. Oskar Minkowski: Discovery of the pancreatic origin of diabetes, 1889. Diabetologia. 1989;32:399–401. doi: 10.1007/BF00271257. PubMed DOI
DeFronzo R.A. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37:667–687. doi: 10.2337/diab.37.6.667. PubMed DOI
Murai Y., Ohta T., Tadaki H., Miyajima K., Shinohara M., Fatchiyah F., Yamada T. Assessment of Pharmacological Responses to an Anti-diabetic Drug in a New Obese Type 2 Diabetic Rat Model. Med. Arh. 2017;71:380–384. doi: 10.5455/medarh.2017.71.380-384. PubMed DOI PMC
Rostène W., De Meyts P. Insulin: A 100-Year-Old Discovery with a Fascinating History. Endocr. Rev. 2021;42:503–527. doi: 10.1210/endrev/bnab020. PubMed DOI
Allen F.M. Studies Concerning Glycosuria and Diabetes. Harvard University Press; Cambridge, UK: 1913.
Mirsky A., Gitelson S. The diabetic response of geese to pancreatectomy. Endocrinology. 1958;63:345–348. doi: 10.1210/endo-63-3-345. PubMed DOI
Stamler J., Katz L.N., Bolene C. The Effect of Pancreatectomy on Lipemia, Tissue Lipidosis and Atherogenesis in Chicks. Circulation. 1951;4:255–261. doi: 10.1161/01.CIR.4.2.255. PubMed DOI
Collins-Williams J., Renold A.E., Marble A. Attempts to produce diabetes in guinea pigs by alloxan and pancreatectomy with observations on the effect of a diet deficient in cystine and methionine. Endocrinology. 1950;46:1–13. doi: 10.1210/endo-46-1-1. PubMed DOI
Pauls F., Bancroft R.W. Production of diabetes in the mouse by partial pancreatectomy. Am. J. Physiol. 1950;160:103–106. doi: 10.1152/ajplegacy.1949.160.1.103. PubMed DOI
Long C.N., Lukens F.D. The effects of adrenalectomy and hypophysectomy upon experimental diabetes in the cat. J. Exp. Med. 1936;63:465–490. doi: 10.1084/jem.63.4.465. PubMed DOI PMC
Foglia V.A. Caracteristicas del la diabetes en la rata. Rev. Soc. Argent. Biol. 1944;20:21–37.
Imamura T., Koffler M., Helderman J.H., Prince D., Thirlby R., Inman L., Unger R.H. Severe diabetes induced in subtotally depancreatized dogs by sustained hyperglycemia. Diabetes. 1988;37:600–609. doi: 10.2337/diab.37.5.600. PubMed DOI
Kobayashi K., Kobayashi N., Okitsu T., Yong C., Fukazawa T., Ikeda H., Kosaka Y., Narushima M., Arata T., Tanaka N. Development of a porcine model of type 1 diabetes by total pancreatectomy and establishment of a glucose tolerance evaluation method. Artif. Organs. 2004;28:1035–1042. doi: 10.1111/j.1525-1594.2004.00002.x. PubMed DOI
Gao X., He J., Zhu A., Xie K., Yan K., Jiang X., Xu Y., Li Q., Xu A., Ye D., et al. Modelling gestational diabetes mellitus: Large animals hold great promise. Rev. Endocr. Metab. Disord. 2021;22:407–420. doi: 10.1007/s11154-020-09617-x. PubMed DOI
Walpole A.L., Innes J.R. Experimental diabetes: The effect of ligation of the pancreatic duct upon the action of alloxan in rabbits. Br. J. Pharmacol. Chemother. 1946;1:174–185. doi: 10.1111/j.1476-5381.1946.tb00036.x. PubMed DOI PMC
Catala J., Bonnafous R., Hollande E. Disturbances in the regulation of glycaemia in rabbits following pancreatic duct ligation. Biochemical and immunocytochemical studies. Diabetes Metab. 1986;12:203–211. PubMed
Martin J.M., Lacy P.E. The prediabetic period in partially pancreatectomized rats. Diabetes. 1963;12:238–242. doi: 10.2337/diab.12.3.238. DOI
Dhuria R.S., Singh G., Kaur A., Kaur R., Kaur T. Current status and patent prospective of animal models in diabetic research. Adv. Biomed. Res. 2015;4:117. PubMed PMC
Jacobs H.R. Hypoglycemic Action of Alloxan. Proc. Soc. Exp. Biol. Med. 1937;37:407–409. doi: 10.3181/00379727-37-9590P. DOI
Dunn J.S., Mcletchie N.G.B. Experimental alloxan diabetes in the rat. Lancet. 1943;242:384–387. doi: 10.1016/S0140-6736(00)87397-3. DOI
Goldner M.G., Gomori G. Studies on the mechanism of alloxan diabetes. Endocrinology. 1944;35:241–248. doi: 10.1210/endo-35-4-241. PubMed DOI
Dunn J.M., Kirkpatrick J., Mcletchie N., Telfer S. Necrosis of the islets of Langerhans produced experimentally. J. Pathol. 1943;55:245–257. doi: 10.1002/path.1700550302. DOI
Rakieten N., Rakieten M.L., Nadkarni M.R. Studies on the diabetogenic action of streptozotocin (NSC-37917) Cancer Chemother. Rep. 1963;29:91–98. PubMed
Pandey S., Chottova Dvorakova M. Future perspective of diabetic animal models. Endocr. Metab. Immune Disord. Drug Targets. 2020;20:25–38. doi: 10.2174/1871530319666190626143832. PubMed DOI PMC
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001;50:537–546. PubMed
Gorus F.K., Malaisse W.J., Pipeleers D.G. Selective uptake of alloxan by pancreatic B-cells. Biochem. J. 1982;208:513–515. doi: 10.1042/bj2080513. PubMed DOI PMC
Elsner M., Tiedge M., Guldbakke B., Munday R., Lenzen S. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia. 2002;45:1542–1549. doi: 10.1007/s00125-002-0955-x. PubMed DOI
Jörns A., Munday R., Tiedge M., Lenzen S. Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro. J. Endocrinol. 1997;155:283–293. doi: 10.1677/joe.0.1550283. PubMed DOI
Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–226. doi: 10.1007/s00125-007-0886-7. PubMed DOI
Gorray K.C., Baskin D., Brodsky J., Fujimoto W.Y. Responses of pancreatic b cells to alloxan and streptozotocin in the guinea pig. Pancreas. 1986;1:130–138. doi: 10.1097/00006676-198603000-00004. PubMed DOI
Ramfjord S. Clinical and histologic effects of alloxan in rhesus monkeys. Am. J. Clin. Pathol. 1952;22:745–754. doi: 10.1093/ajcp/22.8.745. PubMed DOI
Dufrane D., van Steenberghe M., Guiot Y., Goebbels R.M., Saliez A., Gianello P. Streptozotocin-Induced Diabetes in Large Animals (Pigs/Primates): Role of GLUT2 Transporter and β-cell Plasticity. Transplantation. 2006;81:36–45. doi: 10.1097/01.tp.0000189712.74495.82. PubMed DOI
Romsos D.R., Leveille G.A., Allee G.L. Alloxan diabetes in the pig (Sus domesticus). Response to glucose, tolbutamide and insulin administration. Comp. Biochem. Physiol. A Comp. Physiol. 1971;40:557–568. doi: 10.1016/0300-9629(71)90240-4. PubMed DOI
Logothetopoulos J., Brosky G. Mitotic activity of islet cells in alloxan and streptozotocin diabetic mice studies by radioautography. Diabetes. 1968;17:306. PubMed
Lazarus S.S., Shapiro S.H. Comparison of morphologic changes in nuclei of rabbit pancreatic islet B-cells induced by streptozotocin, alloxan, and in vitro necrosis. Lab. Investig. 1973;29:90–98. PubMed
Portha B., Picon L., Rosselin G. Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia. 1979;17:371–377. doi: 10.1007/BF01236272. PubMed DOI
Danby R., Bluff L., Deheny T.P., Gibson W.R. Effects of alloxan and streptozotocin at high doses on blood glucose levels, glucose tolerance, and responsiveness to sulphonylureas in chickens. Gen. Comp. Endocrinol. 1982;47:159–169. doi: 10.1016/0016-6480(82)90217-9. PubMed DOI
Castiñeiras M.J., Boronat A., Itarte E., Guinovart J.J., Rosell-Pérez M. Inducción de diabetes experimental en la rana [Induction of experimental diabetes in frog (author’s transl)] Rev. Esp. Fisiol. 1978;34:385–388. PubMed
Kumar S., Khanna S.S. Influence of alloxan administration on the blood glucose, islets of langerhans and some other tissues of the frog, Rana tigrina. Anat. Anz. 1978;143:242–249. PubMed
Kumar S., Khanna S.S. Blood glucose and pancreatic islets in frogs after streptozotocin treatment. Anat. Anz. 1981;150:335–342. PubMed
Kerns K.C., Farrar E.S. Streptozotocin treated bullfrogs fail to develop insulin deficiency. Comp. Biochem. Physiol. A Comp. Physiol. 1986;85:765–769. doi: 10.1016/0300-9629(86)90292-6. PubMed DOI
Gill T.S., Khanna S.S. Effect of streptozotocin on the blood glucose level and histology of the principal islets of Channa punctatus (Bloch) Z. Mikrosk. Anat. Forsch. 1975;89:319–326. PubMed
Gill T.S., Khanna S.S. Effect of alloxan administration upon Channa punctatus (Bloch) Z. Mikrosk. Anat. Forsch. 1974;88:673–680. PubMed
Wright J.R., Jr., Abraham C., Dickson B.C., Yang H., Morrison C.M. Streptozotocin dose-response curve in tilapia, a glucose-responsive teleost fish. Gen. Comp. Endocrinol. 1999;114:431–440. doi: 10.1006/gcen.1999.7269. PubMed DOI
Xu B.Y., Morrison C.M., Yang H., Wright J.R., Jr. Tilapia islet grafts are highly alloxan-resistant. Gen. Comp. Endocrinol. 2004;137:132–140. doi: 10.1016/j.ygcen.2004.02.017. PubMed DOI
Sharchil C., Vijay A., Ramachandran V., Bhagavatheeswaran S., Devarajan R., Koul B., Yadav D., Balakrishnan A. Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet. Sci. 2022;9:312. doi: 10.3390/vetsci9070312. PubMed DOI PMC
Olsen A.S., Sarras M.P., Jr., Intine R.V. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen. 2010;18:532–542. doi: 10.1111/j.1524-475X.2010.00613.x. PubMed DOI PMC
Black H.E., Rosenblum I.Y., Capen C.C. Chemically induced (streptozotocin-alloxan) diabetes mellitus in the dog. Biochemical and ultrastructural studies. Am. J. Pathol. 1980;98:295–310. PubMed PMC
Han Q., Sun J., Xie W., Bai Y., Wang S., Huang J., Zhou S., Li Q., Zhang H., Tang Z. Repeated Low-Dose Streptozotocin and Alloxan Induced Long-Term and Stable Type 1 Diabetes Model in Beagle Dogs. Biomed. Res. Int. 2022;2022:5422287. doi: 10.1155/2022/5422287. PubMed DOI PMC
Tschoepe D., Job F.P., Huebinger A., Freytag G., Torsello G., Peter B., Gries F.A. Combined subtotal pancreatectomy with selective streptozotocin infusion—A model for the induction of insulin deficiency in dogs. Res. Exp. Med. 1989;189:141–152. doi: 10.1007/BF01851264. PubMed DOI
Jin X., Zeng L., He S., Chen Y., Tian B., Mai G., Yang G., Wei L., Zhang Y., Li H., et al. Comparison of single high-dose streptozotocin with partial pancreatectomy combined with low-dose streptozotocin for diabetes induction in rhesus monkeys. Exp. Biol. Med. 2010;235:877–885. doi: 10.1258/ebm.2010.009361. PubMed DOI
Reiser H.J., Whitworth UGJr Hatchell D.L., Sutherland F.S., Nanda S., McAdoo T., Hardin J.R. Experimental diabetes in cats induced by partial pancreatectomy alone or combined with local injection of alloxan. Lab. Anim. Sci. 1987;37:449–452. PubMed
Phares C.K. Streptozotocin-induced diabetes in Syrian hamsters: New model of diabetes mellitus. Experientia. 1980;36:681–682. doi: 10.1007/BF01970137. PubMed DOI
Nakamura T., Terajima T., Ogata T., Ueno K., Hashimoto N., Ono K., Yano S. Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biol. Pharm. Bull. 2006;29:1167–1174. doi: 10.1248/bpb.29.1167. PubMed DOI
Naidoo P., Islam M.S. Development of an alternative non-obese non-genetic rat model of type 2 diabetes using caffeine and streptozotocin. Pharmacol. Rep. 2014;66:585–593. doi: 10.1016/j.pharep.2014.02.019. PubMed DOI
Zhang F., Ye C., Li G., Ding W., Zhou W., Zhu H., Chen G., Luo T., Guang M., Liu Y., et al. The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp. Anim. 2003;52:401–407. doi: 10.1538/expanim.52.401. PubMed DOI
Wilson R.D., Islam M.S. Fructose-fed streptozotocin-injected rat: An alternative model for type 2 diabetes. Pharmacol. Rep. 2012;64:129–139. doi: 10.1016/S1734-1140(12)70739-9. PubMed DOI
Xu F., Wang N., Li G., Guo W., Yang C., Liu D. Establishment and Assessment of Mice Models of Type 2 Diabetes Mellitus. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2017;39:324–329. doi: 10.3881/j.issn.1000-503X.2017.03.005. PubMed DOI
Koopmans S.J., Mroz Z., Dekker R., Corbijn H., Ackermans M., Sauerwein H. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2-like diabetic pig model. Metabolism. 2006;55:960–971. doi: 10.1016/j.metabol.2006.03.004. PubMed DOI
Capiotti K.M., Antonioli RJr Kist L.W., Bogo M.R., Bonan C.D., Da Silva R.S. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014;171:58–65. doi: 10.1016/j.cbpb.2014.03.005. PubMed DOI
Engerman R.L., Kern T.S. Experimental galactosemia produces diabetic-like retinopathy. Diabetes. 1984;33:97–100. doi: 10.2337/diab.33.1.97. PubMed DOI
Kern T.S., Engerman R.L. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr. Eye Res. 1994;13:863–867. doi: 10.3109/02713689409015087. PubMed DOI
Sidenius P., Jakobsen J. Axonal transport in rats after galactose feeding. Diabetologia. 1980;19:229–233. doi: 10.1007/BF00275274. PubMed DOI
Kadota I. Studies on experimental diabetes mellitus, as produced by organic reagents; oxine diabetes and dithizone diabetes. J. Lab. Clin. Med. 1950;35:568–591. PubMed
Epand R.M., Stafford A.R., Tyers M., Nieboer E. Mechanism of action of diabetogenic zinc-chelating agents. Model system studies. Mol. Pharmacol. 1985;27:366–374. PubMed
Kharat A., Sanap A., Kheur S., Shekatkar M., Bhonde R. Insulin-producing cell clusters derived from human gingival mesenchymal stem cells as a model for diabetes research. Mol. Biol. Rep. 2022;49:11973–11982. doi: 10.1007/s11033-022-08008-6. PubMed DOI
Haber R.S., Weinstein S.P. Role of Glucose Transporters in Glucocorticoid-Induced Insulin Resistance: GLUT4 Isoform in Rat Skeletal Muscle is Not Decreased by Dexamethasone. Diabetes. 1992;41:728–735. doi: 10.2337/diab.41.6.728. PubMed DOI
Thomas C.R., Turner S.L., Jefferson W.H., Bailey C.J. Prevention of dexamethasone-induced insulin resistance by metformin. Biochem. Pharmacol. 1998;56:1145–1150. doi: 10.1016/S0006-2952(98)00151-8. PubMed DOI
Furman B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. 2021;1:e78. doi: 10.1002/cpz1.78. PubMed DOI
Dekel Y., Glucksam Y., Elron-Gross I., Margalit R. Insights into modeling streptozotocin-induced diabetes in ICR mice. Lab. Anim. 2009;38:55–60. doi: 10.1038/laban0209-55. PubMed DOI
Lukić M.L., Stosić-Grujicić S., Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol. 1998;6:119–128. doi: 10.1155/1998/92198. PubMed DOI PMC
Haliga R., Mocanu V., Oboroceanu T., Stitt P.A., Luca V.C. The effects of dietary flaxseed supplementation on lipid metabolism in streptozotocin-induced diabetic hamsters. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2007;111:472–476. PubMed
Sako T., Mori A., Lee P., Goto H., Fukuta H., Oda H., Saeki K., Miki Y., Makino Y., Ishioka K., et al. Supplementing transglucosidase with a high-fiber diet for prevention of postprandial hyperglycemia in streptozotocin-induced diabetic dogs. Vet. Res. Commun. 2010;34:161–172. doi: 10.1007/s11259-010-9342-0. PubMed DOI
Grüssner R., Nakhleh R., Grüssner A., Tomadze G., Diem P., Sutherland D. Streptozotocin-induced diabetes mellitus in pigs. Horm. Metab. Res. 1993;25:199–203. doi: 10.1055/s-2007-1002076. PubMed DOI
Rahman S., Jan G., Jan F.G., Rahim H.U. Phytochemical Analysis and hypoglycemic potential of Filago hurdwarica (Wall. ex DC.) Wagenitz in alloxan induced diabetic mice. Braz. J. Biol. 2022;84:e261518. doi: 10.1590/1519-6984.261518. PubMed DOI
Galagudza M.M., Nekrasova M.K., Syrenskii A.V., Nifontov E.M. Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus. Neurosci. Behav. Physiol. 2007;37:489–493. doi: 10.1007/s11055-007-0040-5. PubMed DOI
Federiuk I.F., Casey H.M., Quinn M.J., Wood M.D., Ward W.K. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: Route of administration, pitfalls, and insulin treatment. Comp. Med. 2004;54:252–257. PubMed
Vieira G.T., de Oliveira T.T., Carneiro M.A.A., Cangussu S.D., Humberto G.A.P., Taylor J.G., Humberto J.L. Antidiabetic effect of Equisetum giganteum L. extract on alloxan-diabetic rabbit. J. Ethnopharmacol. 2020;260:112898. doi: 10.1016/j.jep.2020.112898. PubMed DOI
Badin J.K., Kole A., Stivers B., Progar V., Pareddy A., Alloosh M., Sturek M. Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. J. Transl. Med. 2018;16:58. doi: 10.1186/s12967-018-1431-9. PubMed DOI PMC
Srinivasan K., Viswanad B., Asrat L., Kaul C.L., Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005;52:313–320. doi: 10.1016/j.phrs.2005.05.004. PubMed DOI
From G.L., Craighead J.E., McLane M.F., Steinke J. Virus-induced diabetes in mice. Metabolism. 1968;17:1154–1158. doi: 10.1016/0026-0495(68)90095-4. PubMed DOI
Yoon J.W., Onodera T., Notkins A.L. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J. Exp. Med. 1978;148:1068–1080. doi: 10.1084/jem.148.4.1068. PubMed DOI PMC
Onodera T., Jenson A.B., Yoon J.W., Notkins A.L. Virus-induced diabetes mellitus: Reovirus infection of pancreatic beta cells in mice. Science. 1978;201:529–531. doi: 10.1126/science.208156. PubMed DOI
Menser M.A., Forrest J.M., Bransby R.D. Rubella infection and diabetes mellitus. Lancet. 1978;1:57–60. doi: 10.1016/S0140-6736(78)90001-6. PubMed DOI
Filippi C.M., von Herrath M.G. Viral trigger for type 1 diabetes: Pros and cons. Diabetes. 2008;57:2863–2871. doi: 10.2337/db07-1023. PubMed DOI PMC
Mine K., Takahashi H., Nagafuchi S. Model Animal Mimicking Human Virus-induced Diabetes. eBioMedicine. 2018;32:8. doi: 10.1016/j.ebiom.2018.05.018. PubMed DOI PMC
Meier H., Yerganian G.A. Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). 1. Pathological findings. Proc. Soc. Exp. Biol. Med. 1959;100:810–815. doi: 10.3181/00379727-100-24786. PubMed DOI
Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. Breeding of a non-obese, diabetic strain of mice. Exp. Anim. 1980;29:1–13. doi: 10.1538/expanim1978.29.1_1. PubMed DOI
Ricketts H.T., Petersen E.S., Steiner P.E., Tupikova N. Spontaneous diabetes mellitus in the dog: An account of eight cases. Diabetes. 1953;2:288–294. doi: 10.2337/diab.2.4.288. PubMed DOI
Johnson M.A., Lutty G.A., McLeod D.S., Otsuji T., Flower R.W., Sandagar G., Alexander T., Steidl S.M., Hansen B.C. Ocular structure and function in an aged monkey with spontaneous diabetes mellitus. Exp. Eye Res. 2005;80:37–42. doi: 10.1016/j.exer.2004.08.006. PubMed DOI
Neubauer N., Kulkarni R.N. Molecular approaches to study control of glucose homeostasis. ILAR J. 2006;47:199–211. doi: 10.1093/ilar.47.3.199. PubMed DOI
Kawano K., Hirashima T., Mori S., Saitoh Y., Kurosumi M., Natori T. New inbred strain of Long-Evans Tokushima lean rats with IDDM without lymphopenia. Diabetes. 1991;40:1375–1381. doi: 10.2337/diab.40.11.1375. PubMed DOI
Yokoi N., Kanazawa M., Kitada K., Tanaka A., Kanazawa Y., Suda S., Ito H., Serikawa T., Komeda K. A non-MHC locus essential for autoimmune type I diabetes in the Komeda Diabetes-Prone rat. J. Clin. Investig. 1997;100:2015–2021. doi: 10.1172/JCI119733. PubMed DOI PMC
Lenzen S., Tiedge M., Elsner M., Lortz S., Weiss H., Jörns A., Klöppel G., Wedekind D., Prokop C.M., Hedrich H.J. The LEW.1AR1/Ztm-iddm rat: A new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia. 2001;44:1189–1196. doi: 10.1007/s001250100625. PubMed DOI
Kramer J.W., Nottingham S., Robinette J., Lenz G., Sylvester S., Dessouky M.I. Inherited, early onset, insulin-requiring diabetes mellitus of Keeshond dogs. Diabetes. 1980;29:558–565. doi: 10.2337/diab.29.7.558. PubMed DOI
Conaway H.H., Brown C.J., Sanders L.L., Cernosek S.F., Farris H.E., Roth S.I. Spontaneous diabetes mellitus in the New Zealand white rabbit: History, classification, and genetic analysis. J. Hered. 1980;71:179–186. doi: 10.1093/oxfordjournals.jhered.a109343. PubMed DOI
Cefalu W.T. Animal models of type 2 diabetes: Clinical presentation and pathophysiological relevance to the human condition. ILAR J. 2006;47:186–198. doi: 10.1093/ilar.47.3.186. PubMed DOI
Goto Y., Suzuki K., Ono T., Sasaki M., Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat) Adv. Exp. Med. Biol. 1988;246:29–31. doi: 10.1007/978-1-4684-5616-5_4. PubMed DOI
Shafrir E., Gutman A. Psammomys obesus of the Jerusalem colony: A model for nutritionally induced, non-insulin-dependent diabetes. J. Basic. Clin. Physiol. Pharmacol. 1993;4:83–99. doi: 10.1515/JBCPP.1993.4.1-2.83. PubMed DOI
Kawano K., Hirashima T., Mori S., Saitoh Y., Kurosumi M., Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–1428. doi: 10.2337/diab.41.11.1422. PubMed DOI
Weksler-Zangen S., Yagil C., Zangen D.H., Ornoy A., Jacob H.J., Yagil Y. The newly inbred cohen diabetic rat: A nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes. 2001;50:2521–2529. doi: 10.2337/diabetes.50.11.2521. PubMed DOI
Shinohara M., Masuyama T., Shoda T., Takahashi T., Katsuda Y., Komeda K., Kuroki M., Kakehashi A., Kanazawa Y. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int. J. Exp. Diabetes Res. 2000;1:89–100. doi: 10.1155/EDR.2000.89. PubMed DOI PMC
Peterson R.G., Jackson C.V., Zimmerman K., de Winter W., Huebert N., Hansen M.K. Characterization of the ZDSD Rat: A Translational Model for the Study of Metabolic Syndrome and Type 2 Diabetes. J. Diabetes Res. 2015;2015:487816. doi: 10.1155/2015/487816. PubMed DOI PMC
Wang A.N., Carlos J., Fraser G.M., McGuire J.J. Zucker Diabetic-Sprague Dawley (ZDSD) rat: Type 2 diabetes translational research model. Exp. Physiol. 2022;107:265–282. doi: 10.1113/EP089947. PubMed DOI PMC
Cummings B.P., Digitale E.K., Stanhope K.L., Graham J.L., Baskin D.G., Reed B.J., Sweet I.R., Griffen S.C., Havel P.J. Development and characterization of a novel rat model of type 2 diabetes mellitus: The UC Davis type 2 diabetes mellitus UCD-T2DM rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295:R1782–R1793. doi: 10.1152/ajpregu.90635.2008. PubMed DOI PMC
Nakamura M., Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia. 1967;3:212–221. doi: 10.1007/BF01222198. PubMed DOI
Iwatsuka H., Shino A., Suzuoki Z. General survey of diabetic features of yellow KK mice. Endocrinol. Jpn. 1970;17:23–35. doi: 10.1507/endocrj1954.17.23. PubMed DOI
Suzuki W., Iizuka S., Tabuchi M., Funo S., Yanagisawa T., Kimura M., Sato T., Endo T., Kawamura H. A new mouse model of spontaneous diabetes derived from ddY strain. Exp. Anim. 1999;48:181–189. doi: 10.1538/expanim.48.181. PubMed DOI
Bielschowsky F., Bielschowsky M. The New Zealand strain of obese mice; their response to stilboestrol and to insulin. Aust. J. Exp. Biol. Med. Sci. 1956;34:181–198. doi: 10.1038/icb.1956.22. PubMed DOI
Phillips R.W., Panepinto L.M., Spangler R., Westmoreland N. Yucatan miniature swine as a model for the study of human diabetes mellitus. Diabetes. 1982;31((Suppl. 1)):30–36. doi: 10.2337/diab.31.1.S30. PubMed DOI
Bellinger D.A., Merricks E.P., Nichols T.C. Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J. 2006;47:243–258. doi: 10.1093/ilar.47.3.243. PubMed DOI
Yoshioka M., Kayo T., Ikeda T., Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–894. doi: 10.2337/diab.46.5.887. PubMed DOI
Matveyenko A.V., Butler P.C. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 2006;47:225–233. doi: 10.1093/ilar.47.3.225. PubMed DOI
Shibata M., Yasuda B. Spontaneously occurring diabetes in NSY mice. Jikken Dobutsu. 1979;28:584–590. PubMed
Kaneko K., Chikamoto A., Hsu J.C., Tochinai R., Sekizawa S.I., Yamamoto M., Kuwahara M. Effects of environmental enrichment on autonomic nervous activity in NSY mice. Exp. Anim. 2020;69:161–167. doi: 10.1538/expanim.19-0103. PubMed DOI PMC
Babaya N., Ueda H., Noso S., Hiromine Y., Itoi-Babaya M., Kobayashi M., Fujisawa T., Ikegami H. Genetic dissection of susceptibility genes for diabetes and related phenotypes on mouse chromosome 14 by means of congenic strains. BMC Genet. 2014;15:93. doi: 10.1186/s12863-014-0093-8. PubMed DOI PMC
Ohno T., Miyasaka Y., Yoshida K., Kobayashi M., Horio F., Yokoi N., Mizuno M., Ikegami H. A novel model mouse for type 2 diabetes mellitus with early onset and persistent hyperglycemia. Exp. Anim. 2022;71:510–518. doi: 10.1538/expanim.22-0061. PubMed DOI PMC
Houssay B.A., Martínez C. Experimental Diabetes and Diet. Science. 1947;105:548–549. doi: 10.1126/science.105.2734.548. PubMed DOI
Schmidt-Nielsen K., Haines H.B., Hackel D.B. Diabetes mellitus in the sand rat induced by standard laboratory diets. Science. 1964;143:689–690. doi: 10.1126/science.143.3607.689. PubMed DOI
Kalman R., Ziv E., Shafrir E., Bar-On H., Perez R. Psammomys obesus and the albino rat—Two different models of nutritional insulin resistance, representing two different types of human populations. Lab. Anim. 2001;35:346–352. doi: 10.1258/0023677011911949. PubMed DOI
Wang J., Alexander J.T., Zheng P., Yu H.J., Dourmashkin J., Leibowitz S.F. Behavioral and endocrine traits of obesity-prone and obesity-resistant rats on macronutrient diets. Am. J. Physiol. 1998;274:E1057–E1066. doi: 10.1152/ajpendo.1998.274.6.E1057. PubMed DOI
Matsumoto M., Goriya Y., Sekimoto H. Osteopenic changes in high sugar diet-induced diabetic rabbits (HSDD-R) Diabetes Res. 1991;18:115–122. PubMed
Yin W., Yuan Z., Tsutsumi K., Xie Y., Zhang Q., Wang Z., Fu G., Long G., Yang Y. A lipoprotein lipase-promoting agent, NO-1886, improves glucose and lipid metabolism in high fat, high sucrose-fed New Zealand white rabbits. Int. J. Exp. Diabesity Res. 2003;4:27–34. doi: 10.1080/15438600303732. PubMed DOI PMC
Xi S., Yin W., Wang Z., Kusunoki M., Lian X., Koike T., Fan J., Zhang Q. A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis. Int. J. Exp. Pathol. 2004;85:223–231. doi: 10.1111/j.0959-9673.2004.00394.x. PubMed DOI PMC
Liu Y., Wang Z., Yin W., Li Q., Cai M., Zhang C., Xiao J., Hou H., Li H., Zu X. Severe insulin resistance and moderate glomerulosclerosis in a minipig model induced by high-fat/high-sucrose/ high-cholesterol diet. Exp. Anim. 2007;56:11–20. doi: 10.1538/expanim.56.11. PubMed DOI
Chen H., Liu Y.Q., Li C.H., Guo X.M., Huang L.J. The susceptibility of three strains of Chinese minipigs to diet-induced type 2 diabetes mellitus. Lab. Anim. 2009;38:355–363. doi: 10.1038/laban1109-355. PubMed DOI
Koopmans S.J., Schuurman T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur. J. Pharmacol. 2015;759:231–239. doi: 10.1016/j.ejphar.2015.03.044. PubMed DOI
Hummel K.P., Coleman D.L., Lane P.W. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem. Genet. 1972;7:1–13. doi: 10.1007/BF00487005. PubMed DOI
Surwit R.S., Kuhn C.M., Cochrane C., McCubbin J.A., Feinglos M.N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37:1163–1167. doi: 10.2337/diab.37.9.1163. PubMed DOI
Shafrir E., Ziv E., Kalman R. Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil) ILAR J. 2006;47:212–224. doi: 10.1093/ilar.47.3.212. PubMed DOI
Noda K., Melhorn M.I., Zandi S., Frimmel S., Tayyari F., Hisatomi T., Almulki L., Pronczuk A., Hayes K.C., Hafezi-Moghadam A. An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J. 2010;24:2443–2453. doi: 10.1096/fj.09-152678. PubMed DOI PMC
Wu Y., Zhu X., Odiba A.S., Lin Z., Wen J., Gong D., Liang J., Wu S., Lan G. Comparatively analyzing the liver-specific transcriptomic profiles in Kunming mice afflicted with streptozotocin- and natural food-induced type 2 diabetes mellitus. Mol. Biol. Rep. 2022;49:1369–1377. doi: 10.1007/s11033-021-06970-1. PubMed DOI
Carlson A.J., Drennan F.M. The control of pancreatic diabetes in pregnancy by the passage of the internal secretion of the pancreas of the fetus to the blood of the mother. Am. J. Physiol. 1911;28:391–395. doi: 10.1152/ajplegacy.1911.28.7.391. DOI
Markowitz J., Soskin S. Pancreatic diabetes and pregnancy. Am. J. Physiol. 1927;79:553–558. doi: 10.1152/ajplegacy.1927.79.3.553. DOI
He Y., Wu N., Yu W., Li L., OuYang H., Liu X., Qian M., Al-Mureish A. Research Progress on the Experimental Animal Model of Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2020;13:4235–4247. doi: 10.2147/DMSO.S270935. PubMed DOI PMC
Chandrasekera P.C., Pippin J.J. Of rodents and men: Species-specific glucose regulation and type 2 diabetes research. ALTEX. 2014;31:157–176. doi: 10.14573/1309231. PubMed DOI
Brissova M., Fowler M.J., Nicholson W.E., Chu A., Hirshberg B., Harlan D.M., Powers A.C. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 2005;53:1087–1097. doi: 10.1369/jhc.5C6684.2005. PubMed DOI
Steiner D.J., Kim A., Miller K., Hara M. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets. 2010;2:135–145. doi: 10.4161/isl.2.3.11815. PubMed DOI PMC
Joksimovic S.L., Jevtovic-Todorovic V., Todorovic S.M. The Mechanisms of Plasticity of Nociceptive Ion Channels in Painful Diabetic Neuropathy. Front. Pain Res. 2022;3:869735. doi: 10.3389/fpain.2022.869735. PubMed DOI PMC
Kimura H., Sakai Y., Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 2018;33:43–48. doi: 10.1016/j.dmpk.2017.11.003. PubMed DOI
Sin A., Chin K.C., Jamil M.F., Kostov Y., Rao G., Shuler M.L. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 2004;20:338–345. doi: 10.1021/bp034077d. PubMed DOI
Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668. doi: 10.1126/science.1188302. PubMed DOI PMC
Kim H.J., Li H., Collins J.J., Ingber D.E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. USA. 2016;113:E7–E15. doi: 10.1073/pnas.1522193112. PubMed DOI PMC
Nakao Y., Kimura H., Sakai Y., Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 2011;5:22212. doi: 10.1063/1.3580753. PubMed DOI PMC
Gröger M., Rennert K., Giszas B., Weiß E., Dinger J., Funke H., Kiehntopf M., Peters F.T., Lupp A., Bauer M., et al. Corrigendum: Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model. Sci. Rep. 2018;8:46988. doi: 10.1038/srep46988. PubMed DOI PMC
Vedula E.M., Alonso J.L., Arnaout M.A., Charest J.L. A microfluidic renal proximal tubule with active reabsorptive function. PLoS ONE. 2017;12:e0184330. doi: 10.1371/journal.pone.0184330. PubMed DOI PMC
Ligresti G., Nagao R.J., Xue J., Choi Y.J., Xu J., Ren S., Aburatani T., Anderson S.K., MacDonald J.W., Bammler T.K., et al. A novel three-dimensional human peritubular microvascular system. J. Am. Soc. Nephrol. 2016;27:2370–2381. doi: 10.1681/ASN.2015070747. PubMed DOI PMC
Jang K.J., Suh K.Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10:36–42. doi: 10.1039/B907515A. PubMed DOI
Jang K.J., Mehr A.P., Hamilton G.A., McPartlin L.A., Chung S., Suh K.Y., Ingber D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013;5:1119–1129. doi: 10.1039/c3ib40049b. PubMed DOI
Benam K.H., Villenave R., Lucchesi C., Varone A., Hubeau C., Lee H.H., Alves S.E., Salmon M., Ferrante T.C., Weaver J.C., et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods. 2016;13:151–157. doi: 10.1038/nmeth.3697. PubMed DOI
Nguyen M.T., Satoh H., Favelyukis S., Babendure J.L., Imamura T., Sbodio J.I., Zalevsky J., Dahiyat B.I., Chi N.W., Olefsky J.M. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 2005;280:35361–35371. doi: 10.1074/jbc.M504611200. PubMed DOI
Ruan H., Hacohen N., Golub T.R., Van Parijs L., Lodish H.F. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3t3-l1 adipocytes: Nuclear factor-kappab activation by tnf-alpha is obligatory. Diabetes. 2002;51:1319–1336. doi: 10.2337/diabetes.51.5.1319. PubMed DOI
Rotter V., Nagaev I., Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 2003;278:45777–45784. doi: 10.1074/jbc.M301977200. PubMed DOI
Godwin L.A., Brooks J.C., Hoepfner L.D., Wanders D., Judd R.L., Easley C.J. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst. 2015;140:1019–1025. doi: 10.1039/C4AN01725K. PubMed DOI PMC
Li X., Easley C.J. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal. Bioanal. Chem. 2018;410:791–800. doi: 10.1007/s00216-017-0741-8. PubMed DOI PMC
Liu Y., Kongsuphol P., Chiam S.Y., Zhang Q.X., Gourikutty S.B.N., Saha S., Biswas S.K., Ramadan Q. Adipose-on-a-chip: A dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. Lab Chip. 2019;19:241–253. doi: 10.1039/C8LC00481A. PubMed DOI
Kongsuphol P., Gupta S., Liu Y., Bhuvanendran Nair Gourikutty S., Biswas S.K., Ramadan Q. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Sci. Rep. 2019;9:4887. doi: 10.1038/s41598-019-41338-3. PubMed DOI PMC
Tanataweethum N., Zhong F., Trang A., Lee C., Cohen R.N., Bhushan A. Towards an Insulin Resistant Adipose Model on a Chip. Cell. Mol. Bioeng. 2020;14:89–99. doi: 10.1007/s12195-020-00636-x. PubMed DOI PMC
Kim S., LesherPerez S.C., Kim B.C., Yamanishi C., Labuz J.M., Leung B., Takayama S. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication. 2016;8:015021. doi: 10.1088/1758-5090/8/1/015021. PubMed DOI
Jang K.J., Cho H.S., Kang D.H., Bae W.G., Kwon T.H., Suh K.Y. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. 2011;3:134–141. doi: 10.1039/C0IB00018C. PubMed DOI
Maschmeyer I., Lorenz A.K., Schimek K., Hasenberg T., Ramme A.P., Hübner J., Lindner M., Drewell C., Bauer S., Thomas A., et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15:2688–2699. doi: 10.1039/C5LC00392J. PubMed DOI
Zhou M., Zhang X., Wen X., Wu T., Wang W., Yang M., Wang J., Fang M., Lin B., Lin H. Development of a Functional Glomerulus at the Organ Level on a Chip to Mimic Hypertensive Nephropathy. Sci. Rep. 2016;6:31771. doi: 10.1038/srep31771. PubMed DOI PMC
Wang L., Tao T., Su W., Yu H., Yu Y., Qin J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip. 2017;17:1749–1760. doi: 10.1039/C7LC00134G. PubMed DOI
Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., De Filippo R.E., Perin L., Da Sacco S. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 2019;10:3656. doi: 10.1038/s41467-019-11577-z. PubMed DOI PMC
Xie R., Korolj A., Liu C., Song X., Lu R.X.Z., Zhang B., Ramachandran A., Liang Q., Radisic M. h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS Cent. Sci. 2020;6:903–912. doi: 10.1021/acscentsci.9b01097. PubMed DOI PMC
Perin L., Da Sacco S. Generation of a Glomerular Filtration Barrier on a Glomerulus-on-a-Chip Platform. Methods Mol. Biol. 2022;2373:121–131. doi: 10.1007/978-1-0716-1693-2_8. PubMed DOI PMC
Xing Y., Nourmohammadzadeh M., Elias J.E., Chan M., Chen Z., McGarrigle J.J., Oberholzer J., Wang Y. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis. Biomed. Microdevices. 2016;18:80. doi: 10.1007/s10544-016-0109-4. PubMed DOI
Bauer S., Wennberg Huldt C., Kanebratt K.P., Durieux I., Gunne D., Andersson S., Ewart L., Haynes W.G., Maschmeyer I., Winter A., et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Sci. Rep. 2017;7:14620. doi: 10.1038/s41598-017-14815-w. PubMed DOI PMC
Rodriguez-Moncayo R., Jimenez-Valdes R.J., Gonzalez-Suarez A.M., Garcia-Cordero J.L. Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells. ACS Sens. 2020;5:353–361. doi: 10.1021/acssensors.9b01786. PubMed DOI
Rodríguez-Comas J., Ramón-Azcón J. Islet-on-a-chip for the study of pancreatic β-cell function. In Vitro Models. 2022;1:41–57. doi: 10.1007/s44164-021-00005-6. DOI
Abadpour S., Aizenshtadt A., Olsen P.A., Shoji K., Wilson S.R., Krauss S., Scholz H. Pancreas-on-a-Chip Technology for Transplantation Applications. Curr. Diabetes Rep. 2020;20:72. doi: 10.1007/s11892-020-01357-1. PubMed DOI PMC
Sriram G., Alberti M., Dancik Y., Wu B., Wu R., Feng Z., Ramasamy S., Bigliardi P.L., Qi M.B., Wang Z. Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater. Today. 2018;21:326–340. doi: 10.1016/j.mattod.2017.11.002. DOI
Lukács B., Bajza Á., Kocsis D., Csorba A., Antal I., Iván K., Laki A.J., Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics. 2019;11:445. doi: 10.3390/pharmaceutics11090445. PubMed DOI PMC
Ejiugwo M., Rochev Y., Gethin G., O’Connor G. Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing. Tissue Eng. Part C Methods. 2021;27:77–88. doi: 10.1089/ten.tec.2020.0331. PubMed DOI
Fanizza F., Campanile M., Forloni G., Giordano C., Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J. Tissue Eng. 2022;13:20417314221095339. doi: 10.1177/20417314221095339. PubMed DOI PMC
Tsamandouras N., Chen W.L.K., Edington C.D., Stokes C.L., Griffith L.G., Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS J. 2017;19:1499–1512. doi: 10.1208/s12248-017-0122-4. PubMed DOI PMC
Shinha K., Nihei W., Ono T., Nakazato R., Kimura H. A pharmacokinetic-pharmacodynamic model based on multi-organ-on-a-chip for drug-drug interaction studies. Biomicrofluidics. 2020;14:044108. doi: 10.1063/5.0011545. PubMed DOI PMC
Saiding Q., Ma J., Ke C., Cui W. From “organs on a chip” to “patient on a chip”. Innovation. 2022;3:100282. doi: 10.1016/j.xinn.2022.100282. PubMed DOI PMC
Sung J.H., Kam C., Shuler M.L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip. 2010;10:446–455. doi: 10.1039/b917763a. PubMed DOI
Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., Roberts K., Chung S., Novak R., Ingram M., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 2017;1:0069. doi: 10.1038/s41551-017-0069. PubMed DOI PMC
Naumovska E., Aalderink G., Wong Valencia C., Kosim K., Nicolas A., Brown S., Vulto P., Erdmann K.S., Kurek D. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2020;21:4964. doi: 10.3390/ijms21144964. PubMed DOI PMC
Kujala V.J., Pasqualini F.S., Goss J.A., Nawroth J.C., Parker K.K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B. 2016;4:3534–3543. doi: 10.1039/C6TB00324A. PubMed DOI
Marsano A., Conficconi C., Lemme M., Occhetta P., Gaudiello E., Votta E., Cerino G., Redaelli A., Rasponi M. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16:599–610. doi: 10.1039/C5LC01356A. PubMed DOI
Qian F., Huang C., Lin Y.D., Ivanovskaya A.N., O’Hara T.J., Booth R.H., Creek C.J., Enright H.A., Soscia D.A., Belle A.M., et al. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip. 2017;17:1732–1739. doi: 10.1039/C7LC00210F. PubMed DOI
Wang Y., Wang H., Deng P., Chen W., Guo Y., Tao T., Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip. 2018;18:3606–3616. doi: 10.1039/C8LC00869H. PubMed DOI
Sakolish C., Reese C.E., Luo Y.S., Valdiviezo A., Schurdak M.E., Gough A., Taylor D.L., Chiu W.A., Vernetti L.A., Rusyn I. Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS) Toxicology. 2021;448:152651. doi: 10.1016/j.tox.2020.152651. PubMed DOI PMC
Tissue Chips for Modeling Diabetes. [(accessed on 18 September 2023)];2018 Available online: https://ncats.nih.gov/tissuechip/projects/modeling/2018.
Cheatham W.W. Peroxisome proliferator-activated receptor translational research and clinical experience. Am. J. Clin. Nutr. 2010;91:262S–266S. doi: 10.3945/ajcn.2009.28449D. PubMed DOI