rWTC-MBTA: autologous vaccine prevents metastases via antitumor immune responses

. 2023 Jul 12 ; 42 (1) : 163. [epub] 20230712

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37434263
Odkazy

PubMed 37434263
PubMed Central PMC10337177
DOI 10.1186/s13046-023-02744-8
PII: 10.1186/s13046-023-02744-8
Knihovny.cz E-zdroje

BACKGROUND: Autologous tumor cell-based vaccines (ATVs) aim to prevent and treat tumor metastasis by activating patient-specific tumor antigens to induce immune memory. However, their clinical efficacy is limited. Mannan-BAM (MB), a pathogen-associated molecular pattern (PAMP), can coordinate an innate immune response that recognizes and eliminates mannan-BAM-labeled tumor cells. TLR agonists and anti-CD40 antibodies (TA) can enhance the immune response by activating antigen-presenting cells (APCs) to present tumor antigens to the adaptive immune system. In this study, we investigated the efficacy and mechanism of action of rWTC-MBTA, an autologous whole tumor cell vaccine consisting of irradiated tumor cells (rWTC) pulsed with mannan-BAM, TLR agonists, and anti-CD40 antibody (MBTA), in preventing tumor metastasis in multiple animal models. METHODS: The efficacy of the rWTC-MBTA vaccine was evaluated in mice using breast (4T1) and melanoma (B16-F10) tumor models via subcutaneous and intravenous injection of tumor cells to induce metastasis. The vaccine's effect was also assessed in a postoperative breast tumor model (4T1) and tested in autologous and allogeneic syngeneic breast tumor models (4T1 and EMT6). Mechanistic investigations included immunohistochemistry, immunophenotyping analysis, ELISA, tumor-specific cytotoxicity testing, and T-cell depletion experiments. Biochemistry testing and histopathology of major tissues in vaccinated mice were also evaluated for potential systemic toxicity of the vaccine. RESULTS: The rWTC-MBTA vaccine effectively prevented metastasis and inhibited tumor growth in breast tumor and melanoma metastatic animal models. It also prevented tumor metastasis and prolonged survival in the postoperative breast tumor animal model. Cross-vaccination experiments revealed that the rWTC-MBTA vaccine prevented autologous tumor growth, but not allogeneic tumor growth. Mechanistic data demonstrated that the vaccine increased the percentage of antigen-presenting cells, induced effector and central memory cells, and enhanced CD4+ and CD8+ T-cell responses. T-cells obtained from mice that were vaccinated displayed tumor-specific cytotoxicity, as shown by enhanced tumor cell killing in co-culture experiments, accompanied by increased levels of Granzyme B, TNF-α, IFN-γ, and CD107a in T-cells. T-cell depletion experiments showed that the vaccine's antitumor efficacy depended on T-cells, especially CD4+ T-cells. Biochemistry testing and histopathology of major tissues in vaccinated mice revealed negligible systemic toxicity of the vaccine. CONCLUSION: The rWTC-MBTA vaccine demonstrated efficacy in multiple animal models through T-cell mediated cytotoxicity and has potential as a therapeutic option for preventing and treating tumor metastasis with minimal systemic toxicity.

Zobrazit více v PubMed

Steeg PS, Theodorescu D. Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol. 2008;5(4):206–19. doi: 10.1038/ncponc1066. PubMed DOI PMC

Liedtke C, Kolberg HC. Systemic therapy of Advanced/Metastatic breast Cancer - current evidence and future concepts. Breast Care (Basel) 2016;11(4):275–81. doi: 10.1159/000447549. PubMed DOI PMC

Schaller J, Agudo J. Metastatic colonization: escaping Immune Surveillance. Cancers (Basel). 2020;12(11). PubMed PMC

Paty PB, Nash GM, Baron P, Zakowski M, Minsky BD, Blumberg D, et al. Long-term results of local excision for rectal cancer. Ann Surg. 2002;236(4):522–29. doi: 10.1097/00000658-200210000-00015. PubMed DOI PMC

Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res. 2014;3(4):242–9. PubMed PMC

Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9. doi: 10.1038/nature10673. PubMed DOI PMC

Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin Cancer Res. 2007;13(13):3776–82. doi: 10.1158/1078-0432.CCR-07-0588. PubMed DOI PMC

Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: looking to the future. Oncoimmunology. 2013;2(3):e23403. doi: 10.4161/onci.23403. PubMed DOI PMC

Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73. doi: 10.1186/s12916-016-0623-5. PubMed DOI PMC

Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10(436). PubMed

Guo Y, Wang SZ, Zhang X, Jia HR, Zhu YX, Zhang X, et al. In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses. Nat Commun. 2022;13(1):6534. doi: 10.1038/s41467-022-33831-7. PubMed DOI PMC

Kurtz SL, Ravindranathan S, Zaharoff DA. Current status of autologous breast tumor cell-based vaccines. Expert Rev Vaccines. 2014;13(12):1439–45. doi: 10.1586/14760584.2014.969714. PubMed DOI PMC

Medina R, Wang H, Caisova V, Cui J, Indig IH, Uher O et al. Induction of Immune Response against metastatic tumors via vaccination of Mannan-BAM, TLR Ligands and Anti-CD40 antibody (MBTA). Adv Ther (Weinh). 2020;3(9). PubMed PMC

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. doi: 10.1128/CMR.00046-08. PubMed DOI PMC

Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi: 10.3389/fimmu.2014.00461. PubMed DOI PMC

Miller CL, Sagiv-Barfi I, Neuhofer P, Czerwinski DK, Artandi SE, Bertozzi CR, et al. Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chem Biol. 2022;29(3):451–62. doi: 10.1016/j.chembiol.2021.10.012. PubMed DOI PMC

Toussi DN, Massari P. Immune Adjuvant Effect of molecularly-defined toll-like receptor ligands. Vaccines (Basel) 2014;2(2):323–53. doi: 10.3390/vaccines2020323. PubMed DOI PMC

Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017;17(2):175–86. doi: 10.1080/14737140.2017.1270208. PubMed DOI PMC

Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. 2005;202(5):597–606. doi: 10.1084/jem.20050749. PubMed DOI PMC

Kato K, Itoh C, Yasukouchi T, Nagamune T. Rapid protein anchoring into the membranes of mammalian cells using oleyl chain and poly(ethylene glycol) derivatives. Biotechnol Progr. 2004;20(3):897–904. doi: 10.1021/bp0342093. PubMed DOI

Hu FX, Huang DH, Luo YX, Zhou PQ, Lv C, Wang KT et al. Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells. J Immunother Cancer. 2020;8(2). PubMed PMC

Lin YN, Schmidt MO, Sharif GM, Vietsch EE, Kiliti AJ, Barefoot ME et al. Impaired CXCL12 signaling contributes to resistance of pancreatic cancer subpopulations to T cell-mediated cytotoxicity. Oncoimmunology. 2022;11(1). PubMed PMC

Peng M, Mo YZ, Wang Y, Wu P, Zhang YJ, Xiong F et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18(1). PubMed PMC

Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, et al. Syst Biology Cancer Metastasis Cell Syst. 2019;9(2):109–27. PubMed PMC

Ganesh K, Massague J. Targeting metastatic cancer. Nat Med. 2021;27(1):34–44. doi: 10.1038/s41591-020-01195-4. PubMed DOI PMC

Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904. doi: 10.1038/nm1469. PubMed DOI

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4). PubMed PMC

Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune checkpoint inhibitors in Cancer Therapy. Curr Oncol. 2022;29(5):3044–60. doi: 10.3390/curroncol29050247. PubMed DOI PMC

Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the Tumor Microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31(3):311–25. doi: 10.1016/j.ccell.2017.02.008. PubMed DOI PMC

Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med. 2003;197(9):1107–17. doi: 10.1084/jem.20021787. PubMed DOI PMC

Li DY, Wu MH. Pattern recognition receptors in health and diseases. Signal Transduct Tar. 2021;6(1). PubMed PMC

Luchner M, Reinke S, Milicic A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics. 2021;13(2). PubMed PMC

Huang LL, Ge XY, Liu Y, Li H, Zhang ZY. The role of toll-like receptor agonists and their nanomedicines for Tumor Immunotherapy. Pharmaceutics. 2022;14(6). PubMed PMC

Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol. 2009;21(5):265–72. doi: 10.1016/j.smim.2009.05.010. PubMed DOI PMC

Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV. Memory CD8(+) T cell responses to cancer. Semin Immunol. 2020;49:101435. doi: 10.1016/j.smim.2020.101435. PubMed DOI PMC

Liu Q, Sun Z, Chen L, Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell. 2020;11(8):549–64. doi: 10.1007/s13238-020-00707-9. PubMed DOI PMC

Stege H, Haist M, Nikfarjam U, Schultheis M, Heinz J, Pemler S, et al. The Status of Adjuvant and Neoadjuvant Melanoma Therapy, New Developments and Upcoming Challenges. Target Oncol. 2021;16(5):537–52. doi: 10.1007/s11523-021-00840-3. PubMed DOI PMC

Sledzinska A, de Mucha MV, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, et al. Regulatory T cells restrain Interleukin-2-and Blimp-1-Dependent Acquisition of cytotoxic function by CD4(+) T cells. Immunity. 2020;52(1):151. doi: 10.1016/j.immuni.2019.12.007. PubMed DOI PMC

Uher O, Caisova V, Padoukova L, Kvardova K, Masakova K, Lencova R, et al. Mannan-BAM, TLR ligands, and anti-CD40 immunotherapy in established murine pancreatic adenocarcinoma: understanding therapeutic potentials and limitations. Cancer Immunol Immun. 2021;70(11):3303–12. doi: 10.1007/s00262-021-02920-9. PubMed DOI PMC

Corso CD, Ali AN, Diaz R. Radiation-induced tumor neoantigens: imaging and therapeutic implications. Am J Cancer Res. 2011;1(3):390–412. PubMed PMC

Huang L, Ge X, Liu Y, Li H, Zhang Z. The role of toll-like receptor agonists and their nanomedicines for Tumor Immunotherapy. Pharmaceutics. 2022;14(6). PubMed PMC

Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168–82. doi: 10.1038/nri.2017.131. PubMed DOI PMC

Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized mice. Cancers (Basel). 2023;15(11). PubMed PMC

Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci. 2020;21(11). PubMed PMC

Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–6. doi: 10.1038/nature24462. PubMed DOI PMC

Hong R, Zhao H, Wang Y, Chen Y, Cai H, Hu Y, et al. Clinical characterization and risk factors associated with cytokine release syndrome induced by COVID-19 and chimeric antigen receptor T-cell therapy. Bone Marrow Transplant. 2021;56(3):570–80. doi: 10.1038/s41409-020-01060-5. PubMed DOI PMC

Stewart MD, McCall B, Pasquini M, Yang AS, Britten CD, Chuk M, et al. Need for aligning the definition and reporting of cytokine release syndrome (CRS) in immuno-oncology clinical trials. Cytotherapy. 2022;24(7):742–9. doi: 10.1016/j.jcyt.2022.01.004. PubMed DOI PMC

Watterson A, Coelho MA. Cancer immune evasion through KRAS and PD-L1 and potential therapeutic interventions. Cell Commun Signal. 2023;21(1). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace