Muscarinic Receptors in Cardioprotection and Vascular Tone Regulation
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38634650
PubMed Central
PMC11412339
DOI
10.33549/physiolres.935270
PII: 935270
Knihovny.cz E-zdroje
- MeSH
- agonisté muskarinových receptorů farmakologie MeSH
- kardiotonika farmakologie terapeutické užití MeSH
- lidé MeSH
- receptory muskarinové * metabolismus MeSH
- vazodilatace fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- agonisté muskarinových receptorů MeSH
- kardiotonika MeSH
- receptory muskarinové * MeSH
Muscarinic acetylcholine receptors are metabotropic G-protein coupled receptors. Muscarinic receptors in the cardiovascular system play a central role in its regulation. Particularly M2 receptors slow down the heart rate by reducing the impulse conductivity through the atrioventricular node. In general, activation of muscarinic receptors has sedative effects on the cardiovascular system, including vasodilation, negative chronotropic and inotropic effects on the heart, and cardioprotective effects, including antifibrillatory effects. First, we review the signaling of individual subtypes of muscarinic receptors and their involvement in the physiology and pathology of the cardiovascular system. Then we review age and disease-related changes in signaling via muscarinic receptors in the cardiovascular system. Finally, we review molecular mechanisms involved in cardioprotection mediated by muscarinic receptors leading to negative chronotropic and inotropic and antifibrillatory effects on heart and vasodilation, like activation of acetylcholine-gated inward-rectifier K+-currents and endothelium-dependent and -independent vasodilation. We relate this knowledge with well-established cardioprotective treatments by vagal stimulation and muscarinic agonists. It is well known that estrogen exerts cardioprotective effects against atherosclerosis and ischemia-reperfusion injury. Recently, some sex hormones and neurosteroids have been shown to allosterically modulate muscarinic receptors. Thus, we outline possible treatment by steroid-based positive allosteric modulators of acetylcholine as a novel pharmacotherapeutic tactic. Keywords: Muscarinic receptors, Muscarinic agonists, Allosteric modulation, Cardiovascular system, Cardioprotection, Steroids.
Laboratory of Neurochemistry Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Eglen RM. Overview of muscarinic receptor subtypes. In: Fryer AD, Christopoulos Arthur, Nathanson NM, editors. Handb Exp Pharmacol. Springer; Berlin Heidelberg, Gemany: pp. 3–28. PubMed DOI
Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325:321–326. doi: 10.1038/325321a0. PubMed DOI
Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996;380:255–258. doi: 10.1038/380255a0. PubMed DOI
Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407–1417. doi: 10.1111/j.1540-8159.2010.02841.x. PubMed DOI
Howland RH. Vagus Nerve Stimulation. Curr Behav Neurosci Rep. 2014;1:64–73. doi: 10.1007/s40473-014-0010-5. PubMed DOI PMC
Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–762. doi: 10.1016/j.jacc.2009.05.015. PubMed DOI
Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998;77:59–79. doi: 10.1016/S0163-7258(97)00085-5. PubMed DOI
Elhusseiny A, Cohen Z, Olivier A, Stanimirović DB, Hamel E. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab. 1999;19:794–802. doi: 10.1097/00004647-199907000-00010. PubMed DOI
Kakinuma Y. Future perspectives of a cardiac non-neuronal acetylcholine system targeting cardiovascular diseases as an adjunctive tool for metabolic intervention. Int Immunopharmacol. 2015;29:185–188. doi: 10.1016/j.intimp.2015.05.029. PubMed DOI
Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52:165–247. doi: 10.1016/0079-6107(88)90014-4. PubMed DOI
Pappano AJ, Mubagwa K. Muscarinic agonist-induced actions on potassium and calcium channels in atrial myocytes: differential desensitization. Eur Heart J. 1991;12(Suppl F):70–75. doi: 10.1093/eurheartj/12.suppl_F.70. PubMed DOI
Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 1987;6:3923–3929. doi: 10.1002/j.1460-2075.1987.tb02733.x. PubMed DOI PMC
Caulfield MP. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993;58:319–79. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI
Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, et al. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 2018;50:1–9. doi: 10.1152/physiolgenomics.00062.2017. PubMed DOI
Krejčí A, Tuček S. Quantitation of mRNAs for M 1 to M 5 Subtypes of Muscarinic Receptors in Rat Heart and Brain Cortex. Mol Pharmacol. 2002;61:1267–1272. doi: 10.1124/mol.61.6.1267. PubMed DOI
Harvey RD. Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol. 2012:299–316. doi: 10.1007/978-3-642-23274-9_13. PubMed DOI
Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev. 1999;51:651–690. PubMed
Trendelenburg A-U, Gomeza J, Klebroff W, Zhou H, Wess J. Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol. 2003;138:469–480. doi: 10.1038/sj.bjp.0705053. PubMed DOI PMC
Vanhoutte PM, Cohen RA. Effects of acetylcholine on the coronary artery. Fed Proc. 1984;43:2878–2880. PubMed
Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation. 1993;88:43–54. doi: 10.1161/01.CIR.88.1.43. PubMed DOI
Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526. doi: 10.1038/327524a0. PubMed DOI
Myslivecek J, Klein M, Novakova M, Ricny J. The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:103–116. doi: 10.1007/s00210-008-0285-8. PubMed DOI
Heijman J, Kirchner D, Kunze F, Chrétien EM, Michel-Reher MB, Voigt N, et al. Muscarinic type-1 receptors contribute to IK,ACh in human atrial cardiomyocytes and are upregulated in patients with chronic atrial fibrillation. Int J Cardiol. 2018;255:61–68. doi: 10.1016/j.ijcard.2017.12.050. PubMed DOI PMC
Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI, et al. Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol. 2001;37:2136–43. doi: 10.1016/S0735-1097(01)01304-3. PubMed DOI
Gallo MP, Alloatti G, Eva C, Oberto A, Levi RC. M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J Physiol. 1993;471:41–60. doi: 10.1113/jphysiol.1993.sp019890. PubMed DOI PMC
Du XY, Schoemaker RG, Bos E, Saxena PR. Characterization of the positive and negative inotropic effects of acetylcholine in the human myocardium. Eur J Pharmacol. 1995;284:119–127. doi: 10.1016/0014-2999(95)00384-W. PubMed DOI
Walch L, Gascard JP, Dulmet E, Brink C, Norel X. Evidence for a M(1) muscarinic receptor on the endothelium of human pulmonary veins. Br J Pharmacol. 2000;130:73–78. doi: 10.1038/sj.bjp.0703301. PubMed DOI PMC
Tangsucharit P, Takatori S, Zamami Y, Goda M, Pakdeechote P, Kawasaki H, et al. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries. J Pharmacol Sci. 2016;130:24–32. doi: 10.1016/j.jphs.2015.12.005. PubMed DOI
Casado MA, Marín J, Salaices M. Evidence for M1 muscarinic cholinoceptors mediating facilitation of noradrenaline release in guinea-pig carotid artery. Naunyn Schmiedebergs Arch Pharmacol. 1992;346:391–394. doi: 10.1007/BF00171079. PubMed DOI
Yang B, Lin H, Xu C, Liu Y, Wang H, Han H, et al. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem. 2005;16:163–174. doi: 10.1159/000089842. PubMed DOI
Wang H, Lu Y, Wang Z. Function of cardiac M3 receptors. Auton Autacoid Pharmacol. 2007;27:1–11. doi: 10.1111/j.1474-8673.2006.00381.x. PubMed DOI
Yue P, Zhang Y, Du Z, Xiao J, Pan Z, Wang N, et al. Ischemia impairs the association between connexin 43 and M3 subtype of acetylcholine muscarinic receptor (M3-mAChR) in ventricular myocytes. Cell Physiol Biochem. 2006;17:129–136. doi: 10.1159/000092074. PubMed DOI
From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological and WSO (WSO) Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13:612–632. doi: 10.1177/1747493018778713. PubMed DOI
Dauphin F, Hamel E. Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits M3 pharmacology. Eur J Pharmacol. 1990;178:203–213. doi: 10.1016/0014-2999(90)90476-M. PubMed DOI
Ferrer M, Galván R, Marín J, Balfagón G. Presynaptic muscarinic receptor subtypes involved in the inhibition of acetylcholine and noradrenaline release in bovine cerebral arteries. Naunyn Schmiedebergs Arch Pharmacol. 1992;345:619–626. doi: 10.1007/BF00164574. PubMed DOI
Cuevas J, Adams DJ. M4 muscarinic receptor activation modulates calcium channel currents in rat intracardiac neurons. J Neurophysiol. 1997;78:1903–12. doi: 10.1152/jn.1997.78.4.1903. PubMed DOI
Stengel PW, Gomeza J, Wess J, Cohen ML. M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther. 2000;292:877–885. PubMed
Yeh Y-H, Qi X, Shiroshita-Takeshita A, Liu J, Maguy A, Chartier D, et al. Atrial tachycardia induces remodelling of muscarinic receptors and their coupled potassium currents in canine left atrial and pulmonary vein cardiomyocytes. Br J Pharmacol. 2007;152:1021–1032. doi: 10.1038/sj.bjp.0707376. PubMed DOI PMC
Phillips JK, Vidovic M, Hill CE. Variation in mRNA expression of alpha-adrenergic, neurokinin and muscarinic receptors amongst four arteries of the rat. J Auton Nerv Syst. 1997;62:85–93. doi: 10.1016/S0165-1838(96)00114-2. PubMed DOI
Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, et al. Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A. 2001;98:14096–14101. doi: 10.1073/pnas.251542998. PubMed DOI PMC
Binkley PF, Nunziata E, Haas GJ, Nelson SD, Cody RJ. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991;18:464–472. doi: 10.1016/0735-1097(91)90602-6. PubMed DOI
Mazzadi AN, Pineau J, Costes N, Le Bars D, Bonnefoi F, Croisille P, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging. 2009;2:365–72. doi: 10.1161/CIRCIMAGING.108.822106. PubMed DOI
Gong C, Ding Y, Liang F, Wu S, Tang X, Ding H, et al. Muscarinic receptor regulation of chronic pain-induced atrial fibrillation. Front Cardiovasc Med. 2022;9:934906. doi: 10.3389/fcvm.2022.934906. PubMed DOI PMC
Brodde OE, Konschak U, Becker K, Rüter F, Poller U, Jakubetz J, et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest. 1998;101:471–478. doi: 10.1172/JCI1113. PubMed DOI PMC
Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82. doi: 10.1006/phrs.2001.0835. PubMed DOI
Roy A, Dakroub M, Tezini GCSV, Liu Y, Guatimosim S, Feng Q, et al. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB J. 2016;30:688–701. doi: 10.1096/fj.15-277046. PubMed DOI PMC
Buchholz B, Donato M, Perez V, Deutsch ACR, Höcht C, Del Mauro JS, et al. Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions. Pflugers Arch. 2015;467:1509–1522. doi: 10.1007/s00424-014-1591-2. PubMed DOI
Donato M, Buchholz B, Rodríguez M, Pérez V, Inserte J, García-Dorado D, et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98:425–434. doi: 10.1113/expphysiol.2012.066217. PubMed DOI
Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Thunsiri K, Weerateerangkul P, et al. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm. 2013;10:1700–7. doi: 10.1016/j.hrthm.2013.08.009. PubMed DOI
Billman GE. Effect of carbachol and cyclic GMP on susceptibility to ventricular fibrillation. FASEB J. 1990;4:1668–1673. doi: 10.1096/fasebj.4.6.2156744. PubMed DOI
De Ferrari GM, Vanoli E, Curcuruto P, Tommasini G, Schwartz PJ. Prevention of life-threatening arrhythmias by pharmacologic stimulation of the muscarinic receptors with oxotremorine. Am Heart J. 1992;124:883–890. doi: 10.1016/0002-8703(92)90968-2. PubMed DOI
Li D-L, Liu J-J, Liu B-H, Hu H, Sun L, Miao Y, et al. Acetylcholine inhibits hypoxia-induced tumor necrosis factor-α production via regulation of MAPKs phosphorylation in cardiomyocytes. J Cell Physiol. 2011;226:1052–1059. doi: 10.1002/jcp.22424. PubMed DOI
Liao F, Zheng Y, Cai J, Fan J, Wang J, Yang J, et al. Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep. 2015;5:16590. doi: 10.1038/srep16590. PubMed DOI PMC
Sun L, Zhao M, Yang Y, Xue R-Q, Yu X-J, Liu J-K, et al. Acetylcholine Attenuates Hypoxia/Reoxygenation Injury by Inducing Mitophagy Through PINK1/Parkin Signal Pathway in H9c2 Cells. J Cell Physiol. 2016;231:1171–1181. doi: 10.1002/jcp.25215. PubMed DOI
Liu Y, Sun L, Pan Z, Bai Y, Wang N, Zhao J, et al. Overexpression of M3 muscarinic receptor is a novel strategy for preventing sudden cardiac death in transgenic mice. Mol Med. 2011;17:1179–1187. doi: 10.2119/molmed.2011.00093. PubMed DOI PMC
Liu Y, Wang S, Wang C, Song H, Han H, Hang P, et al. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II. J Transl Med. 2013;11:209. doi: 10.1186/1479-5876-11-209. PubMed DOI PMC
Yang B, Lin H, Xu C, Liu Y, Wang H, Han H, et al. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem. 2005;16:163–174. doi: 10.1159/000089842. PubMed DOI
Zhao L, Chen T, Hang P, Li W, Guo J, Pan Y, et al. Choline attenuates cardiac fibrosis by inhibiting p38MAPK signaling possibly by acting on M3 muscarinic acetylcholine receptor. Front Pharmacol. 2019;10:1386. doi: 10.3389/fphar.2019.01386. PubMed DOI PMC
Wang S, Han H-M, Jiang Y-N, Wang C, Song H-X, Pan Z-Y, et al. Activation of cardiac M3 muscarinic acetylcholine receptors has cardioprotective effects against ischaemia-induced arrhythmias. Clin Exp Pharmacol Physiol. 2012;39:343–349. doi: 10.1111/j.1440-1681.2012.05672.x. PubMed DOI
Zhao J, Su Y, Zhang Y, Pan Z, Yang L, Chen X, et al. Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br J Pharmacol. 2010;159:1217–1225. doi: 10.1111/j.1476-5381.2009.00606.x. PubMed DOI PMC
Jakubík J, Bacáková L, El-Fakahany Esam E, Tucek S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol. 1997;52:172–179. doi: 10.1124/mol.52.1.172. PubMed DOI
Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol. 2014;86:106–115. doi: 10.1124/mol.114.091751. PubMed DOI
Jakubik J, El-Fakahany EE. Current advances in allosteric modulation of muscarinic receptors. Biomolecules. 2020;10:325. doi: 10.3390/biom10020325. PubMed DOI PMC
Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, et al. Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K-AKT-nNOS signaling. J Biol Chem. 2020;295:11720–11728. doi: 10.1074/jbc.RA120.014054. PubMed DOI PMC
Moolman JA. Unravelling the cardioprotective mechanism of action of estrogens. Cardiovasc Res. 2006;69:777–80. doi: 10.1016/j.cardiores.2006.01.001. PubMed DOI
Manavathi B, Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin. J Cell Physiol. 2006;207:594–604. doi: 10.1002/jcp.20551. PubMed DOI
De Munari S, Cerri A, Gobbini M, Almirante N, Banfi L, Carzana G, et al. Structure-based design and synthesis of novel potent Na+,K+-ATPase inhibitors derived from a 5alpha,14alpha-androstane scaffold as positive inotropic compounds. J Med Chem. 2003;46:3644–54. doi: 10.1021/jm030830y. PubMed DOI
Pignier C, Keller M, Vié B, Vacher B, Santelli M, Niggli E, et al. A novel steroid-like compound F90927 exerting positive-inotropic effects in cardiac muscle. Br J Pharmacol. 2006;147:772–82. doi: 10.1038/sj.bjp.0706673. PubMed DOI PMC
Lauro F-V, Maria L-R, Tomas L-G, Francisco DC, Rolando G-M, Marcela R-N, et al. Design and synthesis of two new steroid derivatives with biological activity on heart failure via the M2-muscarinic receptor activation. Steroids. 2020;158:108620. doi: 10.1016/j.steroids.2020.108620. PubMed DOI
Dolejší E, Szánti-Pintér E, Chetverikov N, Nelic D, Randáková A, Doležal V, et al. Neurosteroids and steroid hormones are allosteric modulators of muscarinic receptors. Neuropharmacology. 2021;199:108798. doi: 10.1016/j.neuropharm.2021.108798. PubMed DOI
Dolejší E, Chetverikov N, Szánti-Pintér E, Nelic D, Randáková A, Doležal V, et al. Neuroactive steroids, WIN-compounds and cholesterol share a common binding site on muscarinic acetylcholine receptors. Biochem Pharmacol. 2021;192:114699. doi: 10.1016/j.bcp.2021.114699. PubMed DOI